MAGNETIC PROPERTIES OF PSEUDO-BINARY COMPOUNDS (Nd1-xLux) Mn2 AND (Gd1-xLux) Mn2

Y. Makihara, H. Fujii, K. Hiraoka, T. Kitai, T. Hihara

To cite this version:

HAL Id: jpa-00228703
https://hal.archives-ouvertes.fr/jpa-00228703

Submitted on 1 Jan 1988

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
MAGNETIC PROPERTIES OF PSEUDO-BINARY COMPOUNDS \((\text{Nd}_{1-x}\text{Lu}_x)\text{Mn}_2\) AND \((\text{Gd}_{1-x}\text{Lu}_x)\text{Mn}_2\)

Y. Makihara (1), H. Fujii (2), K. Hiraoka (3), T. Kitai (4) and T. Hihara (2)

(1) Faculty of Engineering, Kyushu Kyoritsu University, Kitakyushu 807, Japan
(2) Faculty of Integrated Arts and Sciences, Hiroshima University, Hiroshima 730, Japan
(3) Faculty of Engineering, Oita University, Oita 870-11, Japan
(4) Laboratory of Applied Physics, Kyushu Institute of Technology, Kitakyushu 804, Japan

Abstract. It has been found that a large Mn moment in \(\text{RMn}_2\) (\(R = \text{Nd and Gd}\)) disappears with decreasing the lattice constant by substituting \(R\) for \(\text{Lu}\). From the results of magnetic and NMR measurements on \((\text{Gd}_{1-x}\text{Lu}_x)\text{Mn}_2\), the magnetic spin structure and the magnitude of Mn moments are deduced.

It has been pointed out that the onset of Mn moment in Laves phase compounds \(\text{RMn}_2\) (\(R = \text{rare earths and Y}\)) correlates with the Mn-Mn distance, \(d_{\text{Mn}-\text{Mn}}\) [1, 2]. Namely, the Mn sublattice in \(\text{RMn}_2\) has a large moment for \(R = \text{Y, Pr, Nd, Sm, Gd and Tb}\) with relatively large \(d_{\text{Mn}-\text{Mn}}\), while it has nearly zero moment for \(R = \text{Dy, Ho, Er, Tm and Lu}\) with small \(d_{\text{Mn}-\text{Mn}}\) at low temperature. In this paper, we present the results of magnetization, thermal expansion and NMR measurements on \((\text{R}_{1-x}\text{Lu}_x)\text{Mn}_2\) with \(R = \text{Nd and Gd}\), where \(\text{Lu}\) is a nonmagnetic atom with the smallest atomic radius in lanthanide.

The samples were prepared by a plasma-jet melting, followed by annealing at 700-850 °C for a week. The powder X-ray diffraction at room temperature shows that all the \((\text{Nd}_{1-x}\text{Lu}_x)\text{Mn}_2\) crystallize into the C14 structure, while \((\text{Gd}_{1-x}\text{Lu}_x)\text{Mn}_2\) into the C15 one for \(x < 0.3\) and the C14 one for \(0.5 < x < 1.0\), where the lattice constant of each system decreases continuously with increasing \(x\).

The results obtained are summarized in figures 1 and 2.

Fig. 1. (a) Susceptibility at \(H = 3.0\) kOe and (b) thermal expansion \(\Delta l/l\) as a function of temperature for \((\text{Nd}_{1-x}\text{Lu}_x)\text{Mn}_2\). The \(\Delta l/l\) was measured by a dilatometer.

Fig. 2. (a) Thermal expansion curves measured by a dilatometer and (b) \(^{55}\text{Mn}\) spin-echo NMR spectra observed under zero field at 4.2 K for \((\text{Gd}_{1-x}\text{Lu}_x)\text{Mn}_2\).
has no distinct anomaly against temperature. These confirm that LuMn$_2$ is a Pauli paramagnet as reported before [4].

In the Gd system, T_N decreases monotonously with increasing x as well as in the Nd system (see Fig. 2a). The reduction of T_N in both the Nd and Gd systems suggests that the antiferromagnetic interaction between Mn moments is weakened by shrinking the lattice. The ω_s at T_N is found to be almost constant for $0 \leq x \leq 0.2$, but it decreases suddenly beyond $x = 0.3$ and disappears for $x \geq 0.5$ with smaller $d_{\text{Mn-Mn}}$ than that of 2.64 Å at 4.2 K. The zero field 55Mn NMR spectra at 4.2 K for $0 \leq x \leq 0.3$, all of which crystallize into the C15 cubic structure, are shown in figure 2b. The NMR signals are observable around 120 MHz in (Gd$_{1-x}$Lu$_x$)Mn$_2$ with $x \leq 0.2$, and other weak signals appear around 30 MHz in addition to 100 MHz for $x = 0.3$. It has been found that the integrated intensities of the spectra around 100-120 MHz decrease with increasing x. Since the signals distributed around 100-120 MHz and 30 MHz seem to be due to the Mn atoms having a large moment and no moment, respectively [1], these results suggest that the number of Mn atoms with a large moment decreases, while that with no moment increases with increasing x. It is worth to note that ω_s at T_N is almost constant for $x \leq 0.2$, while a large number of Mn atoms lose their large moments with increasing x. This might be interpreted to mean that the magnitude of reduction of the amplitude of spin fluctuation $\langle \mu_{\text{Mn}}^2 \rangle$ at T_N increases with the increase of x, because ω_s is proportional to $\langle \mu_{\text{Mn}}^2 \rangle$ suggested by Shiga [5].

As is evident from figure 3a, the (Gd$_{1-x}$Lu$_x$)Mn$_2$ compounds with $x \leq 0.3$ have a large high field susceptibility, χ_M, of $\sim 3 \times 10^{-4}$ emu/g, while χ_M tends to nearly zero for $x \geq 0.5$. This implies that a drastic change on magnetic structure occurs around $x = 0.4$.

In the previous paper [6], we proposed that a Gd-canted and Mn antiferromagnetic (GAMA) structure or a Gd antiferromagnetic and Mn antiferromagnetic (GAMA) one is realized at low temperature in GdMn$_2$. It seems likely that GAMA model for $0 \leq x \leq 0.2$ and GcMA one for $x = 0.3$, which are shown in figure 3b, are reasonable, because the initial slope in the magnetization vs. applied field curve for $x \leq 0.2$ is clearly smaller than that for $x = 0.3$ on spherical samples prepared carefully. The GCMA structure could be developed for $x \leq 0.2$ as a meta-stable state when the field is applied. The Mn moments for $x \leq 0.3$ have been estimated by assuming that the hyperfine coupling constant of 42.7 kOe/µ$_G$ in the antiferromagnetic YMn$_2$ [7] is applicable in this system. The transfer hyperfine field from the Gd sublattice can be neglected for $x \leq 0.2$ because of the antiferromagnetic configuration in Gd sublattice. A collinear ferrimagnetism seems to be established for $x \geq 0.5$, where the Mn moments induced by the exchange field from the ferromagnetic Gd sublattice are coupled antiferromagnetically with the Gd moments as in GdCo$_2$. Assuming that the Gd atoms have a magnetic moment of 7.0 µ$_G$ expected from Gd$^{3+}$ free ion, the Mn moments for $x \geq 0.5$ are estimated. The results are shown in figure 3b. It is seen that the magnitude of Mn moment decreases rapidly around $x = 0.4$, where the $d_{\text{Mn-Mn}}$ is very close to a critical distance of 2.67 Å at 4.2 K.

From these results, it can be concluded that the Mn atoms in (R$_{1-x}$Lu$_x$)Mn$_2$ with R = Nd and Gd lose their ground-state large moments in the compounds which have smaller $d_{\text{Mn-Mn}}$ than a critical value of about 2.67 Å at 4.2 K. The spin configuration in rare earth sublattice changes with the drastic variation of Mn sublattice moments.