ACTIVATED DYNAMIC SCALING IN Cdl-xMnxTe: IS IT A SPIN GLASS?
S. Geschwind, A. Ogielski, G. Devlin

To cite this version:
S. Geschwind, A. Ogielski, G. Devlin. ACTIVATED DYNAMIC SCALING IN Cdl-xMnxTe: IS IT A SPIN GLASS?. Journal de Physique Colloques, 1988, 49 (C8), pp.C8-1011-C8-1012. <10.1051/jphyscol:19888460>. <jpa-00228660>

HAL Id: jpa-00228660
https://hal.archives-ouvertes.fr/jpa-00228660
Submitted on 1 Jan 1988

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
ACTIVATED DYNAMIC SCALING IN Cd$_{1-x}$Mn$_x$Te: IS IT A SPIN GLASS?
S. Geschwind, A. T. Ogielski and G. Devlin

AT&T Bell Laboratories, Murray Hill, NJ 07974, U.S.A.

Abstract. - The linear ac susceptibility $\chi'(\omega, T)$ in Cd$_{1-x}$Mn$_x$Te has been measured in the temperature region of the putative spin glass transition for $x = 0.4$ and $x = 0.65$. $\Delta\chi' = [\chi'(0, T) - \chi'(\omega, T)] / \chi'(0, T)$ is found to obey activated dynamic scaling. The possibility of a dynamically inhibited transition to a type III-like AF state is explored.

The fcc antiferromagnet (AF) is fully frustrated and with the randomness of dilution, as in Cd$_{1-x}$Mn$_x$Te, might exhibit a spin glass state. Typical SG behavior such as frequency dependence of $T_f(\omega)$ [1], hysteresis [2], etc. have been seen in this system. However, since such effects occur in diverse systems, the observation of dynamic scaling with characteristic critical exponents would be more meaningful evidence of a continuous phase transition from a paramagnetic to a SG state.

The relative $\chi'(\omega, T)$ in Cd$_{1-x}$Mn$_x$Te was measured by Faraday rotation (Figs. 1 et 2). The nonlinear response was $< 10^{-3}$. Experimental details are reported elsewhere [3].

We chose to scale the quantity [4]

$$\Delta\chi' = \left[\chi_0(T) - \chi'(\omega, T)\right] / \chi_0(T).$$

The equilibrium $\chi_0(T) = \chi'(\omega = 0, T)$ for $x = 0.4$ can be directly observed in the data above $T = 13.3$ K. At lower T, $\chi_0(T)$ was extrapolated by fitting the quadratic and cubic corrections to the Curie-Weiss law. The reliability of the extrapolation (used only between 12 K and 13.3 K) was verified by the predictive accuracy of fits extrapolated down to 13.3 K from data between 15 to 18 K, and the uncertainty is of the order of our experimental error. Within conventional scaling, $\Delta\chi'$ scales as $\Delta\chi'(\omega, T) \sim \epsilon^\delta \Gamma (\omega \epsilon^{-z\nu})$ where $\epsilon = (T - T_c) / T_c$. When the data of figure 1 are fit with this form, excellent scaling plots are obtained for $z\nu = 12 - 15$, $\beta = 0.6 - 0.7$ and $T_c = 12.05 - 12.2$ [3]. However if only the data above 10 Hz were included, satisfactory fits could also be obtained with $z\nu \sim 10$ and higher T_c, thus emphasizing the importance of a large dynamic range to constrain the parameters.

The uncharacteristically large value of $z\nu$ suggests thermally activated critical dynamics which is not generally expected to occur at a SG transition [5]. Activated dynamic scaling reflects free energy barriers, ΔF, for relaxation processes which scale as $\Delta F \sim \xi^\phi$ with $\tau \approx \tau_0 e^{\Delta F/kT}$ or $\ln \left(\tau / \tau_0\right) \sim \xi^\phi \sim \epsilon^{-\nu\phi}$ [6]. $\Delta\chi'(\omega, T)$ now scales as

$$\Delta\chi' \sim \epsilon^Q G \left(-e^Q \ln \omega \tau_0\right),$$

with $Q = \theta \nu, P = \beta$. The data for $x = 0.4$ and $x = 0.65$ were scaled according to (2) and shown in figure 3. The 40% data scaled well with $T_c = 12.1 \pm 0.2$ K, $\tau_0 = 10^{-12 \pm 1}$ S, $P = Q = 0.65 \pm 0.1$. The smaller dynamic range for the 65% sample gave larger error bounds but similar τ_0, P, Q, with $T_c = 28.4 \pm 0.4$ K. Note that $T_c = 12.1$ is significantly below $T_i \approx 12.8$ for $\nu = 0.1$ Hz (see Fig. 1). This highlights the unreliability of so called “dc” measurements of T_c as true equilibrium can only be attained at inaccessible long times, as implied by figure 1 in [7]. Apparent irreversibility in the magnetization may appear above T_c.
due to the slow dynamics, so this criterion may also mislead one to overestimate T_c and hence underestimate ξ. The suggestion of activated critical dynamics (or unexpected large ξ; see [8]) observed here, the failure to observe the expected divergence in the non-linear susceptibility [9], and the neutron scattering observation for $0.35 \leq x \leq 0.7$ [10] of a significant AF correlation length, ξ_{AF}, in Cd$_{1-x}$Mn$_x$Te all suggest something other than the usual SG transition. The type III AF structure seen [10] corresponds to ordered domains associated with unit cell doubling along one of the three [100] axes. Effects of dilution here are akin to random fields [11] which govern the transition and lead to activated dynamics. For $x = 0.65$, it was found that ξ_{AF} increased rapidly down to $T \sim 30$ K (peak in χ' in Fig. 2) and then saturated at a value of at least 65 Å. This may be due to the very slow dynamics near $T_\text{i}(\omega)$ which inhibits the development of long range order [12]. A considerably smaller ξ_{AF} is seen [10] at lower x which seems to argue against incipient long range order at lower x. However, the similar activated dynamics (Fig. 3) for $x = 0.4$ and $x = 0.65$ suggest a common mechanism rooted in the AF structure. Daniel Fisher [13] has also pointed out that neutron scattering only measures a spin coherence length, ξ_{AF}, but type III tetragonality may persist in a given direction over a greater distance with phase slippage between spins in a shorter distance, ξ_{AF}.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig3.png}
\caption{Activated dynamic scaling of $\Delta' (\omega, T)$ corresponding to equation (2) in text. Reduced temperature ε for 0.008 to 0.2. Symbols (e, o, x, +, v, s, e) denote frequencies from 0.975×10^9 to 0.975×10^{-1} Hz in decade steps.}
\end{figure}

The current explanation of critical activated dynamics requires that a zero temperature fixed point governs the critical behavior [6]. If dilution, x, were the only relevant variable then the phase diagram in the x, T plane could not possibly have a multicritical point separating AF and SG phase, and a higher dimensional phase diagram would be required to allow both AF and SG phases [14]. At present, we also cannot rigorously exclude the possibility of cross-over behavior at lower values of x in which short range AF order is embedded in a different ordered phase, perhaps a SG phase.

Acknowledgments

We thank H. Bouchiat, D. S. Fisher, T. M. Giebultowicz, C. L. Henley, D. L. Huber, D. Huse, L. P. Lévy, H. Sompolinsky and A. P. Young for ongoing discussions; J. Hegarty for earlier aid; and A. K. Ramdas and P. Bridenbaugh for samples.

