MAGNETIZATION ANOMALIES IN Ca2+ (Fe4+) DOPED YIG DILUTED WITH Ga OR Sc
M. Pardavi-Horvath, P. Wigen, P. Degasperis

To cite this version:
M. Pardavi-Horvath, P. Wigen, P. Degasperis. MAGNETIZATION ANOMALIES IN Ca2+ (Fe4+) DOPED YIG DILUTED WITH Ga OR Sc. Journal de Physique Colloques, 1988, 49 (C8), pp.C8-985-C8-986. <10.1051/jphyscol:19888451>. <jpa-00228650>

HAL Id: jpa-00228650
https://hal.archives-ouvertes.fr/jpa-00228650
Submitted on 1 Jan 1988

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
MAGNETIZATION ANOMALIES IN Ca²⁺(Fe⁴⁺) DOPED YIG DILUTED WITH Ga OR Sc

M. Pardavi-Horvath (¹) ¹, P. E. Wigen (²) and P. DeGasperis (³)

(¹) The Ohio State University, Columbus, OH 43210, U.S.A.
(²) Institute of Solid State Electronics, Rome, Italy

Abstract. – The measurements of the temperature dependence of the magnetization of Ca²⁺M³⁺ : YIG (M³⁺ = Ga, Sc; 0.1 ≤ x ≤ 0.3; 0 ≤ y ≤ 1.5) single crystal films has shown a 5-100 % decrease of the magnetization at low temperatures compared to the two-sublattice Néel-model. The anomalies are due to charge compensating Fe⁴⁺ ions, formed via a temperature dependent localization process of the extra hole introduced by the Ca²⁺; the canting of the unsubstituted sublattice; and the low temperature ordering of the paramagnetic Fe⁴⁺ ions having less than two magnetic neighbors.

1. Introduction

The yttrium iron garnet \(\{Y^{3+}\}_{3} \{Fe^{3+}\}_{3}O_{12} \) (YIG), having antiferromagnetically coupled octahedral [Fe] and tetrahedral (Fe) sublattices, is a classical example of ferrimagnetism. Dilution with non-magnetic cations of the tetrahedral and octahedral sublattices results in the change of the magnetization and the Curie temperature. No change in the magnetic properties is expected for non-magnetic dilution at the non-magnetic yttrium sites. However, instead of the expected simple dilution effects a low temperature compensation point of the magnetization was observed in Ca²⁺Ge⁴⁺-substituted epitaxial YIG films, having Ca²⁺ > Ge⁴⁺ [1]. The electrical conductivity, the magnetic anisotropy energy and the linewidth of the ferromagnetic resonance were reported to be anomalously high [2, 3]. These effects are due to Fe⁴⁺ ions, charge compensating for the excess Ca²⁺ [1]. In this model the extra hole is delocalized at high temperatures and it becomes localized at tetrahedral Fe³⁺ sites at low temperatures, producing Fe⁴⁺ ions according to the equation:

\[
[Fe^{4+}]_T = [Fe^{4+}]_0 [1 - \exp (-T_0 / T)],
\]

where \([Fe^{4+}]_0\) is the concentration of Fe⁴⁺ at temperature \(T\), and \(T_0\) is the temperature characterizing the localization of the hole.

The goal of this study was to investigate the magnetic effects of Fe⁴⁺ in the simple Ca²⁺ : YIG system, in Ca²⁺Ga³⁺ : YIG with tetrahedral dilution and in the octahedrally diluted Ca²⁺Sc³⁺ : YIG systems.

2. Experiments

The temperature and angular dependence of the magnetization of epitaxial garnet films, grown on (111) oriented non-magnetic Gd₃Ga₅O₁₂ substrates, was investigated between 4.2 K and the Curie temperature in a vibrating sample magnetometer (PAR 155), in magnetic fields up to 13 kG. The composition of the samples has been determined by Electron Probe Microanalysis (EPMA), with an accuracy of ± 3 %. The EPMA results indicated that in the Ca-substituted samples the smaller dodecahedral Y and Lu ions occupy octahedral sites. Data for representative samples are given in table I.

Table I. – Composition, magnetization \(4\pi M_0\) at \(T = 0\) K and Curie temperature \(T_c\) of substituted garnet films.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Ca</th>
<th>Ga</th>
<th>Sc</th>
<th>Lu</th>
<th>(4\pi M_0)</th>
<th>G</th>
<th>(T_c)</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. YIG</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2 450</td>
<td>549</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. N10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 600</td>
<td>525</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. HP13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4 00</td>
<td>419</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. BP12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 706</td>
<td>243</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. WP13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 85</td>
<td>185</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Results and discussion

The temperature dependence of the magnetization of a Ca: YIG and a CaGa:YIG film is shown in figure 1. For comparison, the magnetization of YIG, (expected for an \(Y_3-xCa_xFe_5O_{12}\) sample), is also shown (No. 1-3 of Tab. I). A decrease of the magnetization at low temperatures is observed due to the presence of charge compensating Fe⁴⁺ ions. A computer fit to the model of reference [1] gives very good agreement between the measured and calculated magnetization values for sample 2 with \(Fe^{4+}/Ca^{2+} = 0.4\) and \(T_0 = 25\) K. The remaining charge is compensated by oxygen vacancies and \(O^-\) ions [4]. The temperature dependence of the

¹On leave from the Central Research Institute for Physics, Budapest, Hungary.
magnetization of $Y_{3-y}Ca_yFe_{5-y}Ga_yO_{12}$ (CaGa: YIG) films with $y < 1$ can be fit to the same model with similar parameters. At higher dilutions, e.g. sample number 3, the fit is good at intermediate temperatures ($Fe^{3+}/Ca^{2+} = 0.2$, $T_0 = 50$ K), however at $T_k = 35$ K the magnetization drops to zero.

Low temperature magnetic anomalies, similar to the case of Ga substituted samples, were observed in the temperature dependence of the magnetization of CaSc: YIG samples with $0 \leq Ca \leq 0.3$ and $0.6 \leq Sc \leq 1.2$ [5]. Typical examples are shown in figure 2 (No. 4 and 5). Sample 4 does not contain Ca at all, but its magnetization is decreased by about 800 G at 0 K.

For number 5 a zero magnetization was observed at $T < 10$ K. In this case, cooling in a 10 kG field through the Curie point resulted in an induced magnetization of 550 G at $T < 4.2$ K. These CaSc: YIG samples contain a high amount of the octahedral substitution (see Tab. I), and for Sc > 0.7 a localized random canting takes place [6]. Based on the theoretical models of canting, the observed decrease of the magnetization on lowering the temperature is unexpected. However, in the case of a high dilution a large number of the Fe^{3+} ions, having less than two magnetic neighbors, become isolated magnetically and will behave as paramagnetic ions at room temperature. These Fe^{3+} ions will order at low temperatures in the exchange field of the magnetic sublattices, contributing to the observed magnetic moment. The presence of Ca$^{2+}$ ions leads to a magnetization contribution from Fe^{4+} ions, as in the case of CaGa: YIG.

In conclusion, the measured magnetization of highly diluted CaSc: YIG is a superposition of the canted ferrimagnetic moment of the Sc: YIG, the low temperature contributions from the ordered paramagnetic Fe^{3+} ions and the Fe^{4+} sublattice. The limit for canting for tetrahedral substitution is much higher than for octahedral substitution ($Ga^{3+} > 1.5$), so canting is not expected for the measured samples, but for number 3 the effect of the paramagnetic Fe^{3+} ions can't be ignored. The measured $M_s = 0$ at $T < 0$ K for highly diluted Ga and Sc-substituted samples (No. 3 and 5) might be due to Fe^{4+} ions leading to the dominance of the intrasublattice antiferromagnetism at low temperatures. The presence of Fe^{4+} with high single ion anisotropy indicates a tendency toward canting for tetrahedrally diluted systems, the opposite being true for octahedral dilution.

Acknowledgments
This work was partially supported by NSF grants DMR-8620109 and INT-8318965.

References