QUASI PARTICLE ENERGY OF 4f-STATES IN THE RAMIREZ-FALICOV-KIMBALL (RFK) MODEL: MEMORY FUNCTION FORMALISM

I. C. Da Cunha Lima, C. Leal, E. A. De Andrada E Silva, A. Troper

To cite this version:

HAL Id: jpa-00228490
https://hal.archives-ouvertes.fr/jpa-00228490
Submitted on 1 Jan 1988

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
QUASI PARTICLE ENERGY OF 4f-STATES IN THE RAMIREZ-FALICOV-KIMBALL (RFK) MODEL: MEMORY FUNCTION FORMALISM

I. C. da Cunha Lima (1'), C. E. Leal (1'), E. A. de Andrade e Silva (1') and A. Troper (2')

(1') Instituto de Pesquisas Espaciais, av. dos Astronautas, 1758, 12.800 São Jose dos Campos, SP, Brazil
(2') Centro Brasileiro de Pesquisas Fisicas - CBPF, Rua Dr. Xavier Sigaud, 150, 22290 Rio de Janeiro, RJ, Brazil

Abstract. – A new formalism is developed, based on the memory function approach, to treat many particle systems. The formalism is applied to the Ramirez-Falicov-Kimball (RFK) Hamiltonian, suitable to describe photoemission spectra in many light rare earth intermetalics. We obtain a quasi particle 4f-energy in the weak correlation regime and we discuss the bimodal structure of the f-f propagator in this regime comparing with the Hubbard-type structure in the strong correlation regime.

It is well known that many experiments concerning the photo-emission of 4f-electrons in light rare earth elements, e.g., Ce, show a double peak structure: one localized at the Fermi level and another approximately 2.5 eV below it.

Parks et al. [1] and Wieliczka et al. [2] have shown that this bimodal structure of the 4f-spectra occurs in many other metallic systems containing light rare earths such as Pr and Nd.

Many works [3, 4, 5] have been proposed in order to explain the 4f-double structure, based, for example, on the rare earth magnetic properties [3] or on screening effects [4, 5]. Nunez-Regueiro and Avignon [6] have calculated the 4f-spectral density, based on the Falicov-Kimball model, adopting Hubbard’s “resonance broadening approximation”. This strong correlation regime approximation, yields one or two peaks depending on the ratio between the Coulomb correlation U between the f-localized states and the d-itinerant states and the d-bandwidth Δ. Moreover, f-d hybridization plays no significant role in the broadening of the two peaks.

In this work, adopting the Ramirez-Falicov-Kimball (RFK) Hamiltonian, we calculate the f-f Green's function in the weak correlation regime, i.e., $U/W < 1$. We develop here a Memory Function matrix formalism, which enables us to describe the weak correlation regime beyond the usual Hartree-Fock approximation.

For the sake of simplicity, we discuss here only the RFK Hamiltonian in the one-impurity case:

$$H = \sum_{\sigma} \varepsilon_0 f_{0\sigma}^\dagger f_{0\sigma} + \sum_{k \sigma} \varepsilon_k d_{k\sigma}^\dagger d_{k\sigma} + \frac{V}{2} \sum_{k \sigma} \left(f_{0\sigma}^\dagger d_{k\sigma} + d_{k\sigma}^\dagger f_{0\sigma} \right) + \sum_{\sigma \sigma'} U n_{0\sigma} n_{0\sigma'} \; ;$$

$$n_{0\sigma} = n_{0\sigma}^a = n_{0\sigma}^b \; ; \quad \sum_{\sigma} n_{0\sigma} = n_0 \; , \quad (\alpha = f \text{ or } d). \quad (1)$$

The local f-f Green function is given by

$$G_{00\sigma}^f (t) = i\theta (t) \left\langle [f_{0\sigma}^\dagger, f_{0\sigma}^\dagger (t)]_+ \right\rangle \cdot (2)$$

Now we introduce the self-consistent many body theory developed by Fedro and Wilson [7], Kishore [8] and Chao et al. [9]. Let us consider two sets of Heisenberg fermion operators A_α and B_β forming a complete space:

$$\{A_\alpha\} = \left\{ f_{0\sigma}, d_{k\sigma}^\dagger \right\}$$

$$\{B_\beta\} = \left\{ f_{0\sigma}^\dagger, d_{k\sigma} \right\}$$

and a projection operator P defined as

$$P\Psi = \sum_j P_j \Psi = \sum_j B_j \left\langle [A_j, \Psi]_+ \right\rangle \cdot (3)$$

Using the sets given by equation (3), we have:

$$P\Psi = f_{0\sigma}^\dagger \left\langle [f_{0\sigma}, \Psi]_+ \right\rangle + \sum_k d_{k\sigma}^\dagger \left\langle [d_{k\sigma}, \Psi]_+ \right\rangle \cdot (4)$$

An equation of motion for the matrix $\tilde{G} (w) :$

$$G_{\alpha\beta} (t) = i\theta (t) \left\langle [A_\alpha, B_\beta (t)]_+ \right\rangle \cdot (5)$$

can be worked out:

$$\tilde{G} (w) = \left[\tilde{\Sigma} - \tilde{\Omega} - \tilde{\gamma} (w) \right]^{-1} \tilde{\chi} \cdot (6)$$

where

$$\Omega_{\alpha\beta} = \left\langle [A_\alpha, LB_\beta]_+ \right\rangle \cdot (7)$$

$$\chi_{\alpha\beta} = \left\langle [A_\alpha, B_\beta]_+ \delta_{\alpha\beta} \right\rangle \cdot (8)$$

and

$$\gamma_{\alpha\beta} (w) = \left\langle [A_\alpha, L - \frac{1}{w - (1 - P) E (1 - P) LB_\beta}]_+ \right\rangle \cdot (9)$$

L being the Liouvillean operators: $L\Psi \equiv [H, \Psi]$.

If we identify our first matrix element with the f-state, we have:

$$G_{00\alpha}^f (w) = \left[w \tilde{\Sigma} - \tilde{\Omega} - \tilde{\gamma} (w) \right]^{-1}_{11} \chi_{11} \cdot (10)$$

Equation (11) can be solved in several levels of approximations for the matrix $\tilde{\gamma} (w)$. In the lowest level of approximation we use the linearized f-d Coulomb term in the Hamiltonian. Then we find: $\tilde{\gamma} (w) = 0$. The f-f propagator becomes:

$$G_{00\alpha}^f (w) = \frac{1}{w - \varepsilon_0 - U \left\langle n_0^d \right\rangle - V^2 F (w)} \cdot (11)$$

where

$$F (w) = \sum_k \frac{1}{w - \varepsilon_k - U \left\langle n_k^f \right\rangle} \cdot (12)$$

and we recover the Hartree-Fock approximation.
In the next step, we use a recursion formula for the self-energy \(\gamma (w) \) [9, 10].

The hierarchy of the Green's function is truncated by approximating conveniently the self-energy \(\gamma^R(n+1 : w) \). Thus, in the first order approximation, we linearize the Hamiltonian for \(\gamma^R(2 : w) \), which will give us again \(\gamma^R(2 : w) = 0 \). Then we obtain from the recursion formula:

\[
E_{\pm} = \frac{V^2 F(w)}{2} \pm \frac{1}{2} \sqrt{\left[2\varepsilon_0 + 2U \left\langle n_0^d \right\rangle + V^2 F(w) \right]^2 + 4U^2 \left\langle n_0^d \right\rangle \left(1 - \left\langle n_0^d \right\rangle \right)}.
\]

The f-f propagator, exhibiting a n-modal structure is obtained by linearizing again the Coulomb interaction contribution for higher \(\gamma^R(n+1 : w) \) terms in the recursion formula. As an illustration of this peculiar feature, we perform the calculation up to a higher level of approximation, truncating the expansion terms in \(\gamma^R(n : w) \), giving rise to terms in \(U^3 \). Then, we have:

\[
\gamma^R (w) = \frac{\left\langle f_{\sigma \theta} \begin{pmatrix} L (1 - P) L f^{\theta}_{\sigma} \end{pmatrix} \right\rangle_{1+} + \left\langle f_{\sigma \theta} \begin{pmatrix} L^2 (1 - P) L f^{\theta}_{\sigma} \end{pmatrix} \right\rangle_{2+}}{w^2 + w \left\langle f_{\sigma \theta} \begin{pmatrix} L f^{\theta}_{\sigma} \end{pmatrix} \right\rangle_{1+} + \left\langle f_{\sigma \theta} \begin{pmatrix} L^2 f^{\theta}_{\sigma} \end{pmatrix} \right\rangle_{2+}}
\]

and after some algebra we obtain:

\[
\gamma^R (w) = \frac{w U^2 \left\langle n_0^d \right\rangle \left(1 - \left\langle n_0^d \right\rangle \right)}{w^2 + \left(\varepsilon_0 + U \left\langle n_0^d \right\rangle \right)} + \left(\varepsilon_0^2 + 2\varepsilon_0 U \left\langle n_0^d \right\rangle + U^2 \left\langle n_0^d \right\rangle + V^2 \right).
\]

Introducing the above result in equation (11) the f-f Green function which exhibits a tri-modal structure for the 4f-spectral density of states, associated to the higher order of the approximation on the self-energy \(\gamma^R(w) \).

If one goes further in our perturbative treatment one can obtain, in principle, a n-modal structure for the f-f propagator. However, for the physical situation which we are interested in, one needs only to go up to second order in \(U \), where the main features of the 4f-states structures are already present (cf. Eq. (19)).

Finally, it should be mentioned, that this approach can also be applied in the case of strong correlation limit, i.e., \(U / \Delta \gg 1 \). In this case, the choice of the starting set of operators is a different one, namely:

\[
\begin{align*}
\langle A_+ \rangle &= \{ f_{\sigma \theta} n_0^{d+} \}, \quad d_{K_\sigma} \\
\langle a^- \rangle &= \{ f_{\sigma \theta} n_0^{d-} \}, \quad \langle d_{K_\sigma} \rangle \\
\langle b \rangle &= \{ f_{\sigma \theta} \}
\end{align*}
\]

where:

\[
\begin{align*}
n_0^{d+} &= n_0^1 \\
n_0^{d-} &= 1 - n_0^1
\end{align*}
\]

With this choice, the f-f propagator can be written as:

\[
G_{00\theta}^{\pm} (w) = G_{00\theta}^{d+} (w) + G_{00\theta}^{d-} (w)
\]

where

\[
G_{00\theta}^{d\pm} (w) = \delta (t) \left\langle \left[f_{\sigma \theta} n_0^{d\pm} \right] \right\rangle.
\]

In the lowest approximation and assuming \(V = 0 \) (i.e., a Falicov-Kimball model), one gets the usual Hubbard-type bimodal structure

\[
G_{00\theta}^{d\pm} (w) = \frac{1 - \left\langle n_0^d \right\rangle}{w - \varepsilon_0} + \frac{\left\langle n_0^d \right\rangle}{w - \varepsilon_0 - U},
\]

which is completely different from the bimodal structure derived in this work, in the weak correlation regime.