FIRST ORDER MAGNETIZATION PROCESS IN Sm (Fe11Ti)
Hong-Shuo Li, Bo-Ping Hu, J. Gavigan, J. Coey, L. Pareti, O. Moze

To cite this version:
Hong-Shuo Li, Bo-Ping Hu, J. Gavigan, J. Coey, L. Pareti, et al.. FIRST ORDER MAGNETIZATION PROCESS IN Sm (Fe11Ti). Journal de Physique Colloques, 1988, 49 (C8), pp.C8-541-C8-542. <10.1051/jphyscol:19888246>. <jpa-00228413>

HAL Id: jpa-00228413
https://hal.archives-ouvertes.fr/jpa-00228413
Submitted on 1 Jan 1988

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
FIRST ORDER MAGNETIZATION PROCESS IN Sm(Fe_{11}Ti)

Hong-Shuo Li (1), Bo-Ping Hu (1), J. P. Gavigan (1), J. M. D. Coey (1), L. Pareti (2) and O. Moze (2)

(1) Department of Pure and Applied Physics, Trinity College, Dublin 2, Ireland
(2) MASPEC Institute of C.N.R., 43100 Parma, Italy

Abstract. - Magnetization measurements on the ThMn_{12}-structure compound, Sm(Fe_{11}Ti), reveal a sharp transition below 150 K when a field of 9 T is applied perpendicular to the c-axis. Singular point detection data indicate a type-I1 first-order magnetization process, which is incompatible with a pure $^6H_{5/2}$ Sm$^{3+}$ ground state. A model which takes account of mixing of higher J-multiplets is used to explain the observations.

The new tetragonal ThMn_{12}-structure compound Sm(Fe_{11}Ti) has recently aroused great interest. The Curie temperature of 584 K [1] is nearly the same as that of Nd$_2$Fe$_{14}$B, 589 K. Its strong uniaxial anisotropy and high iron-content make Sm(Fe$_{11}$Ti) potentially suitable for permanent magnets. Here we report that the compound exhibits a discontinuous change in magnetization when a magnetic field is applied in a hard direction at low temperature. This first order magnetization process (FOMP) has interesting implications for the electronic state of samarium in the compound.

Oriented samples of Sm(Fe$_{11}$Ti) were made by mixing finely-ground powder with epoxy resin and setting in a field of 1.5 T. Magnetization curves were measured with the applied field perpendicular to the orientation direction in fields up to 15 T, at the High Field Magnet Laboratory of University of Nijmegen and at the Service National des Champs Intenses, Grenoble. Measurements in pulsed fields using the singular point detection technique (SPD) were carried out in Parma. Some of the magnetization curves obtained as a function of temperature are shown in figure 1. A sharp upturn is seen in an applied field of about 9 T below 150 K. The SPD measurements indicate the FOMP is of type II (i.e. the magnetization is not saturated after the transition, like that of Pr$_2$Fe$_{14}$B [2]). The thermal variation of the critical and anisotropy fields deduced from these measurements are shown in figure 2.

Previous magnetic measurements on Y(Fe$_{11}$Ti) [1, 3] have shown that the anisotropy of the iron sublattices favours the c-axis ($K^T_1 > 0$); 158Gd Mössbauer results on Gd(Fe$_{10}$T$_2$) [4] and a spin reorientation study of Dy(Fe$_{11}$Ti) [5] suggests that A^5_2 for the 2a site in ThMn$_{12}$ structure is negative, (opposite to that at rare earth sites in the Nd$_2$Fe$_{14}$B structure). Hence the second order crystal-field for Sm$^{3+}$ also favours the c-axis ($K^R_1 > 0$). The total second-order anisotropy in zero field, $K_1 = K^T_1 + K^R_1$, should therefore be positive in Sm(Fe$_{11}$Ti). It was confirmed by Mössbauer spectroscopy on an oriented sample that a c-axis orientation of better than 90% was achieved. Following the theory developed by Asti and Bolzoni [6], the type II FOMP can be understood using the phenomenological anisotropy constants K_1, K_2, K_3. For a system with positive K_1, the type II FOMP requires negative K_2 and positive K_3. Fitting the critical field and the
jump in magnetization we find $K_1 = 160$ K, $K_2 = -96$ K and $K_3 = 34$ K at 4.2 K. However K_3 which is related to the sixth-order crystal field, is zero for the $^6H_{5/2}$ ground state multiplet of the Sm$^{3+}$ ion (the sixth order Stevens coefficient $\gamma_2 = 0$ for $J = 5/2$).

We have established an exchange and crystal-field model to account for available experimental data on the R(Fe$_{11}$Ti) series. The first excited multiplet $^6H_{7/2}$ of the Sm$^{3+}$ ion is only 1438 K [7] above the ground state $^6H_{5/2}$. It is therefore necessary to take account of J-mixing as in the case of SmM$_6$ (M = Co [8, 9], Ni [10]). The total Hamiltonian for the Sm$^{3+}$ ion can be written as

$$H = \lambda L \cdot S - 2 \mu_B S \cdot n_{\text{SmFe}}(M_{\text{Fe}}) + H_{\text{ed}} - \mu_B (L + 2S) \cdot B_0$$

The first term above is due to spin-orbit coupling with $\lambda = 411.1$ K [7]; the second term represents the exchange interaction between Sm and Fe sublattices, with an exchange coefficient n_{SmFe} deduced from the Curie temperature [11] of 300 μ_0; the third term is the crystal-field Hamiltonian for the 2a site in the tetragonal ThMn$_{12}$-structure having point symmetry 4/mmm

$$H_{\text{ed}} = N_0^2 A_0^2 \langle r^2 \rangle U_0^2 + N_0^2 A_0^0 \langle r^4 \rangle U_0^4 + N_0^4 A_0^2 \langle r^2 \rangle U_2^2 + N_0^6 A_0^6 \langle r^6 \rangle U_6^6$$

Here $\{A^k \}$ are the crystal-field coefficients, $\langle r^k \rangle$ is an average over the 4f orbitals given by Freeman and Desclaux [12], and the Racah operators $\{U^k \}$ are deduced using 3-j and 6-j symbols [13]. The fourth term in equation (1) is the Zeeman term where B_0 is applied field. Our method of calculation is the same as that for Nd$_2$Fe$_{14}$B [14]. The iron sublattice magnetization $\langle M_{\text{Fe}} \rangle$ is taken from that of Y(Fe$_{11}$Ti) [1] and the ratios of A_4^4/A_0^0 and A_6^6/A_0^0 are fixed from point charge calculation as -2.4 and 1.6 respectively. The FOMP can be explained with the set of $\{A^k \}$ which is listed in table I. These values are all larger than those reported previously for Dy(Fe$_{11}$Ti) [5]. The corresponding calculated magnetization curve at 4.2 K for applied field along [100] is presented in figure 1.

In fact, J-mixing leads to a non-collinear structure for the magnetic moment $M = (L + 2S)$ and spin S.

Table I. Values of $\{A^k \}$ obtained to describe FOMP, in Kμ_0.

<table>
<thead>
<tr>
<th>A^0_2</th>
<th>A^0_4</th>
<th>A^0_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>-170</td>
<td>27</td>
<td>-16</td>
</tr>
</tbody>
</table>

Keeping in mind that the exchange interaction always couples the spins while Zeeman interaction acts on M, the non-collinearity may become large when an applied field is present, resulting in large, field-dependent values of $\{K_i \}$ [15]. We can conclude that large positive K_3 required for FOMP comes not only from sixth-order crystal-field but also from competition between the exchange and Zeeman interactions.

Acknowledgments

We are grateful to D. Kennedy of Rare Earth Products for providing us with the alloy. This study form part of the “Concerted European Action on Magnets” a project supported by the European Commission.