DETERMINATION OF THE SECOND ORDER ANISOTROPY CONSTANT K1 FROM THE MAGNETIZATION CURVES OF POLYCRYSTALLINE SAMPLES: APPLICATION TO Y-Fe RICH COMPOUNDS

Hong-Shuo Li, Bo-Ping Hu

To cite this version:

Hong-Shuo Li, Bo-Ping Hu. DETERMINATION OF THE SECOND ORDER ANISOTROPY CONSTANT K1 FROM THE MAGNETIZATION CURVES OF POLYCRYSTALLINE SAMPLES: APPLICATION TO Y-Fe RICH COMPOUNDS. Journal de Physique Colloques, 1988, 49 (C8), pp.C8-513-C2-514. <10.1051/jphyscol:19888232>. <jpa-00228397>
DETERMINATION OF THE SECOND ORDER ANISOTROPY CONSTANT K_1
FROM THE MAGNETIZATION CURVES OF POLYCRYSTALLINE SAMPLES:
APPLICATION TO Y-Fe RICH COMPOUNDS

Hong-Shuo Li and Bo-Ping Hu

Department of Pure and Applied Physics, Trinity College, Dublin 2, Ireland

Abstract. – A new approach to the determination of the second order anisotropy constant K_1 for either random or partially oriented polycrystalline samples is described. Good agreement with the results of Singular Point Detection measurements on Y(Fe11Ti) and measurements on an $Y_2Fe_{14}B$ single crystal, justifies the proposed approach.

1. Introduction

The determination of anisotropy constants $\{K_i\}$ from measurements on polycrystalline samples is a well known problem. Czerlinsky [1], Akurov [2] and Néel [3] have proposed the approach to saturation law:

$$M = M_s - a_1/H - a_2/H^2 - a_3/H^3.$$

The use of this model for the determination of anisotropy constants is quite difficult due to the lack of an explicit relationship between $\{a_i\}$ and $\{K_i\}$. Usually one uses the perpendicular magnetization curves of an aligned polycrystalline sample to estimate the anisotropy field B_a. However, imperfect alignment always leads to erroneous values even when making some nontrivial corrections [4]. Here, we describe a new approach based on numerical solutions of the Stoner-Wohlfarth problem which gives accurate values of B_a from magnetization measurements on partially-oriented or random polycrystalline samples.

2. Model

As a first approximation, the oriented polycrystalline sample is considered as a collection of monodomain particles with a certain distribution of c-axes around the aligning direction. The magnetization process as a function of applied field in a uniaxial monodomain particle was first solved by Stoner and Wohlfarth using iterative numerical methods. The free energy for a such system is given by

$$E(\theta, \theta_B) = K_1 \sin^2 \theta - M_S \cos (\theta - \theta_B)$$

where K_1 is second order anisotropy constant and B is internal field, θ and θ_B are respectively the angle from the c-axis for M_S and B. By minimizing equation (1) with respect to θ we obtain:

$$2\gamma \sin \delta = \sin 2(\theta_B - \delta)$$

where $\delta = \theta_B - \theta$ and $\gamma = B / B_a (B_a = 2K_1 / M_S)$ are respectively the lag-angle and the reduced internal field. Recently, a new analytical approach based on Fourier analysis has been used by Pastor and co-workers [6, 7] to solve equation (2) for the lag-angle δ. Due to the oscillatory behaviour near $\gamma \approx 1$ and $\theta_B < \pi / 2$, we have chosen the numerical solutions rather than the analytical ones. Assuming the distribution of c-axes around the aligning direction is described by a Gaussian,

$$P(\theta_B) = A \exp \left(-\theta_B^2 / \theta_0^2 \right)$$

($P(\theta_B) \equiv 1$ for random sample) where $A^{-1} = \int d\Omega P(\theta_B)$ is a normalization constant and θ_0 is the degree of misalignment, the value of magnetization at a fixed reduced internal field γ is given by

$$\langle M \rangle = \int M_S \cos (\gamma, \theta_B) P(\theta_B) \, d\Omega.$$

Again we employ numerical integration with $\Delta\theta_B = 0.1^\circ$ to simulate the theoretical magnetization curves for different given value of θ_0. In order to deduce the anisotropy field B_a (or K_1) from these curves, we have made Sucksmith-Thompson plots [8] of γ / σ versus σ^2 where $\sigma = \langle M \rangle / M_S$ is the reduced magnetization. Examples are shown in figure 1. It can been seen that

Fig. 1. – Sucksmith-Thompson plots for different fixed values of the degree of misalignment θ_0.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19888232
in the range $0.35 < \sigma^2 < 0.75$, γ / σ varies quite linearly with σ^2. Such variation is described by

$$\gamma / \sigma = a(\theta_0) + b(\theta_0) \sigma^2$$

where $a(\theta_0)$ and $b(\theta_0)$ are constants depending only on θ_0. We find by interpolation in the range $\theta_0 = 0^\circ - 30^\circ$, that the θ_0 dependence of a and b is given by

$$a(\theta_0) = 1.000 - 0.01933 \theta_0$$

$$b(\theta_0) = (0.0400 - 0.000435 \theta_0) \theta_0$$

where θ_0 is in degrees. A random sample is a special case where $a = -0.2835$ and $b = 1.6235$. This dependence of the parameters a and b on a single parameter θ_0, is the essential feature of the proposed model.

Transforming equation (4) into a more familiar form gives:

$$B_{app} / \langle M \rangle = (\mu_0 D + aB_a / M_S) + (bB_a / M_S^2) \langle M \rangle^2$$

where $\mu_0 = 4 \pi \times 10^{-7}$, B_{app} and D are respectively the applied field and demagnetizing factor. It is now clear that the anisotropy field and θ_0 (as well as a and b) can be directly deduced from the slope and intercept of a plot of $B_{app} / \langle M \rangle$ versus $\langle M \rangle^2$ using equations (5) and (6) and assuming a knowledge of the spontaneous magnetization M_S.

3. Application

The model described above is valid for uniaxial systems where only the second order anisotropy constant K_1 is important. Yttrium-iron compounds are examples of such systems [9, 10]. We have used the model to deduce the values of K_1 from equations (5) and (6) for Y(Fe$_{11}$Ti) and Y$_2$Fe$_{14}$B. To avoid the complication of magnetic interactions between grains, all samples were prepared by mixing finely-ground alloy powder with epoxy resin and aligning in a field of 1.5 T. The value of D is always taken as $1/3$ in the analysis. Results for K_1 obtained with $\theta_0 = 27^\circ$ for Y(Fe$_{11}$Ti) are compared in figure 2 with those obtained in pulsed field by singular point detection (SPD) [11], the value of θ_0 was confirmed by Mössbauer spectroscopy [12]. Furthermore the value of K_1 at 4.2 K deduced for an oriented Y$_2$Fe$_{14}$B sample is 0.664 MJm$^{-3}$, close to the value of 0.705 MJm$^{-3}$ [10] obtained from single crystal measurements. The excellent agreement between results deduced from the model and those from SPD or single crystal measurements for Y(Fe$_{11}$Ti) and Y$_2$Fe$_{14}$B justifies the validity of the proposed approach.

Fig. 2. – Comparison of the values of K_1 for Y(Fe$_{11}$Ti) obtained from equations (5) and (6) of the model (full squares) with those from SPD measurements [12] (open squares).

References

[12] Hu Bo-Ping, Li Hong-Shuo and Coey, J. M. D., Hyperfine Interactions, in press.