THE STRENGTH OF THE INTERSUBLATTICE INTERACTION IN THE (Er, Y) Fe2 COMPOUNDS

N. Duc, T. Hien, N. Chau, J. Franse

To cite this version:

HAL Id: jpa-00228395
https://hal.archives-ouvertes.fr/jpa-00228395
Submitted on 1 Jan 1988

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
THE STRENGTH OF THE INTERSUBLATTICE INTERACTION IN THE (Er, Y)Fe₂ COMPOUNDS

N. H. Duc (1), T. D. Hien (1), N. H. Chau (1) and J. J. M. Franse (2)

(1) Cryogenic Laboratory, University of Hanoi, SR Vietnam
(2) Natuurkundig Laboratorium der Universiteit van Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam, The Netherlands

Abstract. - Magnetisation and magnetostriction measurements have been performed on the ferrimagnetic ErₓY₁₋ₓFe₂ (x = 1.0, 0.8, 0.6 and 0.4) compounds. All investigated compounds have a compensation point in the temperature range between 100 K and 500 K. The strength of the Er-Fe interaction has been estimated to be equal to 138 T/μ₉, equivalent to a value for the R-Fe coupling parameter of about 7.8 K.

1. Introduction

The magnetic behaviour of the RₓTₙ compounds (R is a rare-earth element and T a transition-metal element) is largely governed by the intersublattice interaction, especially for the heavy rare-earth elements. A numerical result for this interaction can, in general, be obtained from the Curie temperature, (Tc) [1, 2], or from an analysis of the paramagnetic susceptibility [3]. The ferrimagnetic compounds with a compensation point are also suited for an experimental study of the molecular field, see, for instance, the data reported for the compound ErₓFe₂₃ [4]. High-magnetic-field experiments provide another technique for evaluation of the intersublattice interaction, as has been shown for the series R₂T₇ [5, 6]. Recently, Radwanski [7] has shown that the R-T coupling parameter in the RₓTₙ compounds is rather insensitive to the R or T element as well as to the composition. The aim of the present paper is to evaluate the Er-Fe interaction parameter in the (Er, Y)Fe₂ compounds, by analysing the Curie temperatures and the compensation points.

2. Experimental results and analysis

Polycrystalline samples of the ErₓY₁₋ₓFe₂ compounds (x = 1.0, 0.8, 0.6 and 0.4) were prepared by arc-melting under argon atmosphere. Magnetisation measurements were performed by an induction method, whereas a three-terminal capacitance method was used to measure the magnetostriction. The temperature dependence of the magnetisation of the investigated compounds in an applied field of 0.2 T is presented in figure 1. All compounds are ferrimagnetic as follows from the observed compensation points at a temperature denoted by Tₓ. Values for Tₓ and Tk are collected in table I and table II, respectively. The results for Tk were confirmed by magnetostriction measurements.

Table I. - Values for the Curie temperature, Tc, the 3d-susceptibility at Tc, χ₃d(Tc), and the iron effective moment, peff, in the ErₓY₁₋ₓFe₂ compounds.

<table>
<thead>
<tr>
<th>x</th>
<th>Tc (K)</th>
<th>χ₃d=10² (μμB/T at.)</th>
<th>peff (μμB/at.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>575</td>
<td>5.05</td>
<td>3.40</td>
</tr>
<tr>
<td>0.8</td>
<td>551</td>
<td>6.55</td>
<td>3.05</td>
</tr>
<tr>
<td>0.6</td>
<td>542</td>
<td>9.20</td>
<td>3.15</td>
</tr>
<tr>
<td>0.4</td>
<td>533</td>
<td>14.50</td>
<td>3.10</td>
</tr>
<tr>
<td>0.0</td>
<td>518</td>
<td>–</td>
<td>3.16</td>
</tr>
</tbody>
</table>

Table II. - Values for the compensation temperature, Tk, the molecular field coefficient, nR₋₃d, and the exchange interaction parameter, Jₓ₋₃d, for the ErₓY₁₋ₓFe₂ compounds.

<table>
<thead>
<tr>
<th>x</th>
<th>Tk (K)</th>
<th>nR₋₃d (T/μμB)</th>
<th>Jₓ₋₃d (T/μμB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>485</td>
<td>24.5</td>
<td>147</td>
</tr>
<tr>
<td>0.8</td>
<td>385</td>
<td>25.0</td>
<td>150</td>
</tr>
<tr>
<td>0.6</td>
<td>296</td>
<td>29.0</td>
<td>172</td>
</tr>
<tr>
<td>0.4</td>
<td>155</td>
<td>30.0</td>
<td>180</td>
</tr>
</tbody>
</table>

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19888230
The Curie temperature is described in the so-called s-d model [1, 2, 8, 9] by the following expression:

$$T_c = \left[N \mu_B^2 J_{R-3d} \right] \chi_d (T_c)$$ \hspace{1cm} (1)

with J_{R-3d} the effective exchange constant, $(g - 1)^2 J (J + 1)$ the De Gennes factor, $\chi_d (T_c)$ the 3d-susceptibility at T_c, Avogadro’s number, etc. A value of $138 \ T/\mu_B$ has been derived for the parameter J_{R-3d} of the RFe$_2$ compounds in order to obtain a value of $3.4 \ \mu_B$/at. for the effective moment of iron [9]. The corresponding value for the R-T spin-spin coupling parameter A_{R-3d} amounts to $10.6 \times 10^{-23} \ J$. This result is in good agreement with the value of $9.27 \times 10^{-23} \ J$, reported for all R$_m$T$_n$ intermetallics [6, 7]. Substituting the experimentally derived values for the Curie temperature together with the above-given result for J_{R-3d} in equation (1), we determined values for $\chi_d (T_c)$. The results are listed in table I. Describing the χ_d values with a Curie-Weiss law with a value for θ of 518 K (the ordering temperature of YFe$_2$) we deduce values for the effective iron moment decreasing from $3.4 \ \mu_B$/at. for ErFe$_2$ to $3.1 \ \mu_B$/at. in the yttrium-substituted alloys, see table I. A similar decrease of the effective iron moment has also been observed for the (Gd, Y)Fe$_2$ system [11].

The exchange interaction parameter can also be evaluated from the temperature of the compensation point. In this case we approximate the temperature dependence of the rare-earth moment by a Brillouin function:

$$M_R (T) = x g J \mu_B B J \left(g \mu_B n_{R-3d} M_d / k_B T \right)$$ \hspace{1cm} (2)

The value for M_d is determined from experiments. Here, we employ the results from our Mössbauer-spectroscopy investigations at room temperature: $M_d = 1.30 \ \mu_B$. The resulting values for n_{R-3d} are collected in table II. The interaction parameter n_{R-3d}, determined in this way, is not sensitive to the exact value for the 3d moment. Decreasing, for instance, M_d from 1.6 μ_B down to 1.0 μ_B, we calculate a five percent decrease in the value of n_{R-3d} for ErFe$_2$ only.

From the value of $24.5 \ T/\mu_B$ for n_{R-3d} of ErFe$_2$ we deduce a value of $(147 \ T/\mu_B)$ for the parameter J_{R-3d} ($= n_{R-3d} g / (g - 1)$). This value is in satisfying agreement with that deduced from the expression for T_c ($138 \ T/\mu_B$). A refinement in the derivation of n_{R-3d} can be made by taking into account in equation (2) the interactions within the rare-earth sublattice.

Acknowledgments

The authors express their thanks to P. P. Mai for assistance in the experiments and to N. P. Thuy, R. J. Radwanski and P. E. Brommer for helpful discussions.