STRUCTURAL AND MAGNETIC PROPERTIES OF THE U₃M₄Ge₁₃ (M = Ru, Os, Rh, Ir) TERNARY GERMANIDES

B. Lloret, B. Chevalier, P. Gravereau, B. Darriet, J. Etourneau

To cite this version:

HAL Id: jpa-00228379
https://hal.archives-ouvertes.fr/jpa-00228379
Submitted on 1 Jan 1988

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
STRUCTURAL AND MAGNETIC PROPERTIES OF THE $U_3M_4Ge_{13}$ ($M = Ru, Os, Rh, Ir$) TERNARY GERMANIDES

B. Lloret, B. Chevalier, P. Gravereau, B. Darriet and J. Etourneau

Laboratoire de Chimie du Solide du CNRS, 351 cours de la Libération, 33405 Talence Cedex, France

Abstract. – $U_3M_4Ge_{13}$ and $U_3Os_4Ge_{13}$ germanides crystallize in a superstructure of the cubic $Yb_3Rh_4Sn_{13}$-type structure and exhibit no magnetic order above 4.2 K. On the contrary, $U_3Ir_4Ge_{13}$ orders ferromagnetically near $T_c \simeq 15$-17 K whereas $U_3Rh_4Ge_{13}$ orders antiferromagnetically at 22 K.

In the last years, many ternary stannides, germanides and silicides with formulae $RE_3M_4X_{13}$ ($RE =$ rare earth, $M = Ru, Os, Rh, Ir$ and $X = Si, Ge, Sn$) were prepared [1, 2, 3]. These compounds crystallize in the cubic $Yb_3Rh_4Sn_{13}$-type (space group $Pm3n$) or in derived structure [4]. Some of these materials have remarkable superconducting properties.

Recently, it was established that URu_2Si_2 shows both a magnetic phase transition at 17.5 K and a superconducting transition at 0.8 K [5]. These interesting results have stimulated us to investigate other new uranium ternary compounds. We report here the structural, magnetic and electrical properties of the new ternary germanides $U_3M_4Ge_{13}$ with $M = Ru, Os, Rh, Ir$.

All samples were prepared by melting stoichiometric amounts of the binary germanide UGe_3, noble metals Ru, Os, Rh, Ir and germanium. The resulting ingots were annealed in evacuated quartz tubes at 850 °C for two weeks. The samples were characterized by X-ray diffraction and microprobe analysis.

X-ray powder diffraction shows that the $U_3Ru_4Ge_{13}$ and $U_3Os_4Ge_{13}$ germanides crystallize in the cubic $Yb_3Rh_4Sn_{13}$-type structure. The lattice parameter (a) is respectively equal to 8.939 Å for $M = Ru$ and to 8.949 Å for $M = Os$. However a crystal study performed by Weissenberg and precession photographs on the $U_3Os_4Ge_{13}$ compound reveals a modification of the primitive cubic structure. Splitting of the diffraction spots, well seen at high θ values on Weissenberg films for the three axes, could be explained by a small tetragonal distortion of the lattice and twinning of the crystal. In the family of ternary stannides, $Gd_3Rh_2Sn_{13}$ crystallizes in a tetragonal cell with $a' \sim a\sqrt{2}$ and $c' \sim a$ [4]. As the difference between $a'/\sqrt{2}$ and c' is very small, twin formation has to be expected in this tetragonal phase. In the $Yb_3Rh_4Sn_{13}$-type or in the derived structure, the Ru and Os atoms occupy the trigonal prism formed by six Ge(2) atoms. The RuGe$_6$ or OsGe$_6$ prisms, share corners, to form a three-dimensional network, which generates icosahedral and cuboctahedral sites which are occupied by the Ge(1) and U atoms. In these ternary germanides, the U-U distance (~ 4.47 Å) is greater than the critical value of 3.4-3.6 Å known as the Hill limit [6]. Due to the decrease of the 5f-wave functions overlap, the U atoms bear a stable magnetic moment.

Above 300 K, the thermal variation of the reciprocal susceptibility χ_{m}^{-1} of $U_3Ru_4Ge_{13}$ and $U_3Os_4Ge_{13}$ can be fitted to a linear Curie-Weiss law with an effective magnetic moment of 2.86 μ_B / U atom for $M = Ru$ and 3.24 μ_B / U atom for $M = Os$. Above 4.2 K, no magnetic order has been detected for $U_3Os_4Ge_{13}$ compound. Below 6-8 K, χ_{m} tends to saturate for $U_3Ru_4Ge_{13}$ and the thermal variation of the electrical resistivity exhibits a minimum around $T \approx 10-20$ K and then increases at lower temperature. These results suggest a Kondo-like behaviour for $U_3Ru_4Ge_{13}$.

The X-ray powder patterns of $U_3Rh_4Ge_{13}$ and $U_3Ir_4Ge_{13}$ show that these germanides adopt a derived structure of $Yb_3Rh_4Sn_{13}$-type. Some diffraction lines corresponding to the $Pm3n$ space group are split including the (222) one, and so a simple tetragonal distortion is excluded. So far, the crystal structure of these two germanides is unknown.

The magnetic susceptibility of $U_3Ir_4Ge_{13}$ follows a Curie-Weiss like dependence in the temperature range 300 K $< T < 500$ K with $\mu_{\text{eff}} = 2.92 \mu_B / U$. This compound orders ferromagnetically near 15-17 K.

The thermal variation of the reciprocal magnetic susceptibility of $U_3Rh_4Ge_{13}$ (Fig. 1) shows a Curie-Weiss behaviour above 250 K with $\mu_{\text{eff}} = 2.96 \mu_B / U$ and $\theta_m = -70$ K. The thermal dependence of the magnetic susceptibility reveals a maximum at 22 K suggesting an antiferromagnetic ordering of the U atoms (Fig. 1). The magnetization curves of $U_3Rh_4Ge_{13}$ observed at $T = 2$ K and 6 K in fields up to 6 T are displayed in figure 2. A rapid change of the magnetization between 3 and 4 T resembling a metamagnetic transition is observed at 6 K with a hysteresis phenomena. At 2 K, two jumps in the magnetization curve are clearly visible. In addition, the electrical resistivity of $U_3Rh_4Ge_{13}$ decreases at 1.7-1.8 K showing a zero-resistance value close to 1.5 K. The occurrence of this anomaly which depends on the sample preparation could be due to the onset of a superconducting

transition. A single crystal study is necessary in order to confirm if this transition is intrinsic or due to small amounts of precipitates not detected by X-rays.

