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Abstract. - We review the recent progress in the theory of electron correlations in transition metals. Both qualitative 
picture and the quantitative results obtained for the magnetic moments, exchange splittings, Stoner parameter and 
magnetovolume effect of Fe, Co and Ni are presented and discussed in detail. 

1. Introduction 

In spite of considerable progress in recent years, 
a satisfactory description of electronic and magnetic 
properties of 3d transition metals is still a challeng- 
ing problem. There is no doubt that electron corre- 
lations are imvortant and thus itinerant and localized 
degrees of freedom have to be treated simultaneously. 
The modern theory of magnetism of transition met- 
als at finite temperature replaces the interaction be- 
tween electrons by the interaction of a moving elec- 
tron with external fluctuating fields treated within the 
functional integral method [I]. However, the calcula- 
tions are made usually within the static approximation 
which reduces to the ground state of independent elec- 
trons at T = 0 121. 

There are two ways to include correlations in the 
ground state. First of them is based on the local 
spin density approximation (LSDA) [3] within the den- 
sity functional method [4]. It avoids calculating the 
wave function and has b&n remarkablv successful in 
determining binding energies, lattice constants and 
magnetic moments of transition metals [5]. But go- 
ing into details, one notices also its certain shortcom- 
ings. There are deviations in the binding energy of 
1-2 eV, the calculated lattice constants are too short 
by N 2 % and the calculated magnetic moment of Fe is 
by N 5 % laxger than the observed one for the experi- 
mental lattice constants [Z]. Experiments indicate that 
the anisotropy i n  the populations and the exchange 
splittings (ES) for different 3d states is underestimated 
both for bulk Ni [6] and for Ni(001) surface [?I. It is 
also well known that the values of the ferromagnetic 
(F) transition temperatures T, which are predicted 
from the energy difference between nonmagnetic (NM) 
and F phase as obtained in the calculations making use 
of LSDA, are by a factor of 3-5 larger than those ob- 
served experimentally [8]. Clearly, all these shortcom- 
ings have to do with the unsatisfactory treatment of 
electron correlations by the LSDA. It cannot describe 
correctly nonlocal short-range correlations which are 
absent in the homogeneous electron gas. 

 ema anent address.  

Another way to deal with electron correlations is to 
calculate their effects directly, starting from the respec- 
tive Slates determinant. At present this is not possible 
on an ab initio level, so one has to use a model Hamil- 
tonian. This approach to the correlation problem has 
been started in late seventies by formulating the second 
order perturbation (SOP) expansion [9]. It demon- 
strated the stabilization of NM phase by correlation 
effects and explained qualitatively the dependence of 
cohesive energy on electron density [9-111. The corre- 
lation energy is then, however, seriously overestimated 
due to the missing saturation effects between the intra- 
and interorbital correlations which arise from higher 
order processes and may be considered as screening ef- 
fects [12]. This difficulty has been removed by a vari- 
ational method to. determine the ground state wave 
function, known as a local approach (LA) [13-171. The 
advantage of LA lies in its transparency which allows 
to identify the energy contributions coming from dif- 
ferent correlation processes and to understand which 
of them axe poorly treated by the LSDA, as well as in 
the possibility of calculating various two-particle cor- 
relation functions. 

2. Model Hamiltonian and local approach 

We describe the 3d states of a transition metal by a 
model Hamiltonian [15] 

H = x&rninrnia + tm+,nja+iaanja 

1 
mia mnijq 

+- 2 C (uijnmianmj..+ ~ i j a f  a a ~ j a ~ a m ~ a ~ a m j ~ )  , 
mijoe' (1) 

where five equivalent 3d orbitals (i, j) at each at& 
m (n) are assumed. The corresponding local densities 
of states (DOS's) may be either assumed or taken from 
band structure calculations as the canonical DOS's for 
bcc and fcc structure [18], respectively. In both cases 
they depend only on one free parameter, the band- 
width W. The orbital energies may differ due to 
crystal field splitting and due to different local config- 
urations around the atoms. Uij and J;j stand for local 
Coulomb and exchange interaction, respectively. They 
may be expressed by the Coulomb element U, the ex- 
change constant J and the anisotropy AJ [16]. We 
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fixed two of these parameters assuming AJ = 0.15 J 
and J  = 0.2 U [9] which leaves only one free parameter 
U. 

Electron correlations are treated within the LA in 
which the correlated ground state I+o) is obtained from 
the corresponding Hartree-Fock (HF) state 140) as fol- 
lows 112171 

I&, = ~ X P  - qnOn] 140) . [ (2) 

This method is thus a natural generalization of the 
Gutzwiller ansatz [19] to a multiorbital problem. The . . 

variational parameters qn are found by the minimiza- 
tion of the ground state energy ELA = ($0 IHl$o) / 
(+o Iljlo ) . For the local operators On we use n,;Tn,il 
and n,in,j to reduce charge fluctuations within or- 
bital i and between two orbitals i and j, respectively, 
while the operators s,is,j introduce spin-spin corre- 
lations which express the Hund's rule coupling which 
leading to the formation of local moments. In this way 
a spin-dependent correlation hole around each electron 
is generated. We calculate the ground state energy 
ELA by performing a variational second order expan- 
sion in powers of r),,. The respective quantities (On H )  
and (OnHOnt) , where (. .) stands for (40 1. - - 1  40) , 
are evaluated by making use of the so-called R = 0 a p  
proximation 1101 in which only the leading local terms 
are preserved. The calculation is then significantly 
simplified since the correlation energy is found only by 
using the DOS1s and the corresponding energy densi- 
ties. The estimated error of this procedure does not 
exceed 5 % for transition metals [14]. More details 
may be found in reference [16]. 

3. Magnetic order and correlations in transi- 
tion metals 

The cohesive energy Ecoh exhibits a spectacular de- 
pendence along a transition metal series with a min- 
imum originating from the exchange interaction and 
reproduced already in HF approximation [9, 151. Ecoh 
decreases with increasing electron interaction energy 
in HF approximation and changes its sign already at 
moderate values of Coulomb interaction U / W  = 0.5, 
practically independently of the details of DOS [15, 21. 
The latter energy contribution is proportional to the 
local charge fluctuations (CF) 

where n, = nmi. They may be reduced in the HF 
i 

approximation only by the breaking of magnetic sym- 
metry. Electron correlations decrease a2 (n,) and thus 
stabilize NM states [5, 121. Simultaneously local mo- 
ments with enhanced spin fluctuations (SF), a2 (S,) , 
defined in a similar way to  (3), are developed (see 

Fig. 1). In the presence of magnetic order (e.g. anti- 
ferromagnetic (AF) of Fig. l) ,  CF are reduced already 
in the HF state 190) and the SF are blocked to a large 
extent. 

Fig. 1. - Reduction of o2 (n,) (solid) and enhancement of 
a2 (S,) (dashed) with increasing U in P and AF states for 
the degenerate orbital model at n d  = 5 [15]. 

It  is now of interest to ask how the criterion for the 
occurrence of magnetic order is changed in the pres- 
ence of correlations. In the HF approximation one 
finds for two different subbands e, and tzg with DOS1s 
N. (ep) and Nt (EF) at the Fermi energy EF, respec- 
tively, the following condition of ferromagnetic (F) in- 
stability [16] 

3 (U + J  + TAJ)  N: (EF) 

Here N (EF) = 3Nt (EF) + 2Ne (ep) is the total DOS. 
The critical values of U (nd) which follow from (4) are 
nonuniformly enhanced by correlations, as shown in 
figure 2a for fcc structure. Figure 2b shows the re- 
gions of stable saturated ferromagnetism. F states 
with nonsaturated moment are present between the F 
instability and the saturated phase. One observes here 
a particular tendency to saturated ferromagnetism for 
7 < nd < 9.6, where nd = (n,). The corrections 
due to spin-spin correlations are in this case typically 
smaller than for the F instability. 

There are two principal complications in the treat- 
ment of correlations in antiferromagnetic (AF) states: 
(i) the possibility of different types of AF order and 
(ii) the nontrivial dependence of the Bloch states on 



Fig. 2. - Ferromagnetic instabilities for a fcc structure: 
(a) onset of ferromagnetic order and (b) regions of saturated 
order in HF (dashed) and within LA without (dotted) and 
with (full lines) spin-spin correlations [16]. 

the magnetic order. A qualitative picture may be ob- 
tained with a degenerate orbital model with a rectan- 
gular DOS Ni (w)  = 1/W and assuming two interpen- 
etrating AF sublattices 1151. In HF approximation the 
AF phase is stable for U + 6 J  > -W/log 11 - nd/51, 
while F state is stable if U + 6 J  > W (see (4)), as 
shown in figure 3. As expected, the regions of AF and 
F states are reduced by correlations. The Coulomb 
(U) and exchange (J) interactions play thereby differ- 
ent roles. While the density correlations, related to 
U, suppress magnetic order, the presence of local mo- 
ments ( ~ 2 )  which develop for finite J, favours it [15]. 
The preference of AF over F order is expected also for 
more realistic DOS1s for nd = 5. 

Fig. 3. - Phase diagram of the degenerate orbital model in 
HF (dashed) and within LA (full lines) 1151. 

perimental magnetic moment for each substance, be- 
ing Mo = 2.12, 1.6 and 0.6 p ~ .  In this way we find 
U = 2.4 eV for Fe and U 2 2.6 eV and U 2 3.1 eV for 
Co and Ni. Looking at the energy difference between 
the P and F states, we have chosen U = 3.1 eV and 
U = 3.3 eV for Co and Ni. Thus, U/W = 0.44, 0.64 
and 0.75, respectively. The energy gain due to mag- 
netic order is drastically reduced from its HF value by 
the density correlations (Tab. I). The spin correlations 
reduce AEdc 33 and 30 % for Fe and Co, respectively. 
This energy gain is only - 10 % for Ni due to the re- 
duced probability of finding two d holes at one atomic 
site. 

Table I. - Energy gains due to F order i n  the HF ap- 
proximation (AEHF) and found when density wrrela- 
tions (AEd,) as well as spin wrrelations (AE,) are 
included, exchange splittings (Ss and St), the Stoner 
parameters found when density and spin correlations 
(Il) , density correlations (12) and only correlations 
due to Uij (13) a= included and avemge ezchange split- 
tangs S = I1 Mo. All quantities i n  eV. 

4. Ground states of Fe, Co and Ni 

Below we analyse in more detail the ground states 
of Fe (bcc) and Co and Ni (both fcc). The electron 
densities are nd= 7.4, 8.4 and 9.4, the bandwidths 
W = 5.43, 4.84 and 4.35 eV, respectively [18]. The The ES presented in table I are found from the con- 
Coulomb interaction U is chosen to reproduce the ex- dition that the partial occupation numbers n. and 
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nt agree with those minimizing the full Hamiltonian 
(1). They are determined under assumption that the 
canonical DOS for each spin subband does not change 
with increasing magnetic moment. While Se and St 
for Fe and Co are rather similar, one finds a consid- 
erable anisotropy in the ES for Ni (holes are located 
in t2g orbitals, see Fig. 4), coming partially from AJ 
(if AJ = 0, S,= 0.27 eV and St= 0.50 eV). It agrees 
reasonably well with the experimental data and with 
the results of other calculations [2] and gives the up- 
per limit for the anisotropy w&ch is likely to decrease 
when the hybridization effects are explicitly taken into 
account. 

U I W  

Fig. 4. - Eledron fillings ni, (full lines) for Ni(fcc). The 
dotted and dashed line show the change of electron den- 
sity per one t~~ orbital with respect to  the ground state at 
U = 0 in the Stoner model and in the present calculation, 
respectively [16]. 

Even stronger anisotropy than in bulk Ni was 
found by our calculations at the surface Ni(001) [17]. 
Thereby the results of the accurate LSDA calculations 
[q were simulated by simplified analytic DOS's. If 
we replace the isotropic exchange which simulates the 
LSDA calculations by the true nonlocal one, the par- 
tial occupancies change from 0.16, 0.15, 0.13 and 0.08 
to about 0.21, 0, 0.22 and 0 for xy, x2 - y2, xz(yz) 
and 3z2 - T' orbitals, respectively. As a consequence, 
the ES'of e, orbitals are again by more than a factor 
of 3 lower than those of tlg ones. 

The magnetic energy is conventionally quantified by 
the Stoner parameter I [8]. In our calculation the total 
energy is 

where the second and third term stand for the loss of 
kinetic energy and for the gain of interaction A d  corre- 
lation energy due to magnetic order, respectively. 1(0) 
is the Stoner parameter I. It is reduced by electron cor- 
relations from its HF value and has a rather complex 
dependence on the electron density n d  [20]. We have 
used three successive approximations to evaluate the 
effects of different correlations on I (M) [21], getting: 
11 (M) from the complete LA (2), I 2  (M) by neglecting 
the spin correlations and 13 (M) by neglecting all cor- 
relation effects due to Jij. The spin correlations are not 
included in the LSDA scheme at all, while other non- 
local correlations due to exchange interaction Jij are 
treated rather poorly. Thus, I2  (M) and 13 (M) form 
a lower and upper limit for the inaccuracy of LSDA 
calculations. I (M) has an explicit dependence on M 
and is strongly reduced by correlations for M % 0 (see 
Tab. I and Fig. 5). Our results suggest that the error 
in the Stoner parameter found in LSDA calculations 
amounts to 12-22 % , 18-33 % and 12-39 % for F'e, Co 
and Ni, respectively. This means that the predicted 
values of the transition temperature [8] should be re- 
duced accordingly. The same applies to the average 
ES S which may be found from the relation S = I1 Mo. 

Fig. 5. - Stoner parameter I (M) and the loss of kinetic 
energy D (M) for Fe as obtained from the canonical bcc 
band (dashed) and within LSDA (dotted) [21]. 



The values of S presented in table I agree very well 
with the averages over S, and St. On the other hand, 
the ground state magnetic moment Mo of Fe changes 
only by 4 % (15 % ) when I1 is replaced by I2 (13) 
(Fig. 5). This effect is even smaller when the DOS 
obtained from the LSDA calculations is used (D' (M) 
in Fig. 5). We recall that Mo found within the LSDA 
scheme is indeed by 5 % too large. 

The lattice constants calculated within the LSDA 
are different for NM and F states. Since no appreciable - - 
difference is observed, it suggests that magnetic mo- 
ments exist in the P phase and are almost as large as in 
the ordered ground state [22]. According to the LSDA, 
the magnetovolume effect (MVE) is given by two con- 
tributions: the difference in kinetic energy A E $ ~  of 
noninteracting electrons in two states and the differ- 
ence AE,, in the local exchange-correlation potential. 
The second term includes small correlation corrections 
only. Our model Harniltonian (1) does not depend ex- 
plicitly on volume and we have to investigate its de- 
pendence on W. Due to correlations we found a reduc- 
tion of the kinetic energy difference. For instance, in 
Fe AE$~ = 0.099 W is reduced to AEki, = 0.071 W. 
This large (almost 30 % ) reduction of the MVE is 
apparently missing within the LSDA. Together with 
the second term AE,, the MVE in Fe is thus reduced 
by N 50 %. For Co and Ni the correlation corrections 
to AE:~ are only about 50 % of what they are for 
Fe. It is likely that the missing reduction of the MVE 
in 3d metals could be explained by the volume depen- 
dence of the exchange and correlation energy, not fully 
described within the LSDA and reflected in a rather 
strong volume dependence of the Stoner parameter I 
[23]. In fact, we found a In I18 In V % -0.7 for 
n d  = 9.5 in fcc lattice [23], while the LSDA gives a 
much weaker dependence, not exceeding -0.2 in the 
case of Pd. This has a strong effect on the value of the 
magnetic pressure which is proportional to the deriva- 
tive a In (IN) /a  In V [23] which is reduced to about 
60 % by electron correlations. This agrees very well 

vanced calculations in the t-matrix approach gave the 
ES S, = 0.21 eV and St = 0.37 eV for Ni [25] which 
agree better with the experimental values of 0.2 eV 
and 0.33 eV than our numbers extracted from canon- 
ical fcc band. It would be of interest to investigate 
the explicit role of s-p hybridization and to consider 
the excited states beyond the low-density limit by a 
proper extension of LA. 

The flexibility of the LA allows to investigate as well 
nearest-neighbour correlations. One finds a decrease of 
AF correlatioas except for 3.5 < n d  < 6.5, where these 
correlations are enhanced [26], in agreement with the 
phase diagram of figure 3. Surprisingly, the energy 
gain connected with the spin-spin correlations for the 
neighbouring atoms is lower than 100 K per atom [26]. 
It is much smaller than the Curie temperature and 
indicates that the magnetic order in P phase may ex- 
ist only within domains exceeding certain critical size. 
The stability and the role of such domains in neutron 
scattering have to be investigated further. 

Summarizing, we have reviewed the most important 
results obtained for correlation effects in 3d metals by 
making use of the LA. This method contributes sig- 
nificantly to our present understanding of local cor- 
relations in transition metals and provides a system- 
atic method to correct the results of LSDA calcula- 
tions by a proper inclusion of nonlocal effects. It was 
also generalized to finite temperatures in which case 
it improves the static appoximation in the functional 
integral method [27]. 

Acknowledgments 

The author would like to thank particularly Dr. G. 
Stollhoff for numerous valuable discussions and Prof. 
P. Fulde for many discussions and his encouragement 
of this line of work. He is also grateful to Drs. 0 .  
Gunnarsson, A. B. Kaiser and J. Zaanen for discus- 
sions and acknowledges the financial support of the 
Polish Research Project CPBP 01.09. - 

with the trends found experimentally for Pd and Ni 
alloys [23]. [I] Moriya, T., Spin fluctuations in itinerant electron 

magnetism, Solid State Sci. Vol. 56 (Springer) 

5. Correlations in t h e  excited states and final 
remarks 

Correlation effects were observed in the photoemis- 
sion spectroscopy. The presence and positions of satel- 
lites, narrowing of DOS as well as the experimentally 
determined dispersions of d bands can be explained 
only after correcting the results of the LSDA calcula- 
tions by the correlation effects [2]. The simplest way 
to include them is by SOP formula making use of the 
R = 0 approximation [24]. The fit to the observed 
band structure gives then the values of U = 1, 1.5 
and 2 eV for Fe, Co and Nil respectively. More ad- 

1985. 
[2] Fulde, P., Kakehashi, Y. and Stollhoff, G., Metal- 

lic Magnetism, Ed. H. Capellmann, Top. Cuw. 
Physics (Springer) 42 (1987) 159. 

[3] Gunnarsson, 0. and Lundqvist, B. I., Phys. Rev. 
B 13 (1976) 4274. 

[4] Hohenberg, P. and Kohn, W., Phys. Rev. 136 
(1964) 864; 
Kohn, W. and Sham, L. J., Phys. Rev. 140 
(1965) 1133. 

[5] Moruzzi, V. L., Janak, J. F. and Williams, A. R., 
Calculated electronic properties of metals (Perg- 
amon) 1978. 



C8 - 48 JOURNAL DE PHYSIQUE 

[6] Cooke, J. F., Lynn, J. W. and Davis, H. L., Phys. 
Rev. B 21 (1980) 4118. 

[7] Jepsen, O., Madsen, J. and Andersen, 0. K., 
Phys. Rev. B 26 (1982) 2790. 

[8] Gunnarsson, O., J. Phys. F 6 (1976) 587. 

[9] Friedel, J. and Sayers, C. M., J. Phys. France 38 
(1977) 697. 

[lo] Kajzar, F. and Friedel, J., J. Phys. h n c e  39 
(1978) 397. 

[ll] TkBglia, G., Ducastelle, F. and Spanjaard, D., J. 
Phys. h n c e  41 (1980) 281. 

[12] Old, A. M. and Chao, K. A., Phys. Lett. A 89 
(1982) 420. 

(131 Ole$, A. M., Phys. Rev. B 23 (1981) 271. 
[14] Stollhoff, G. and Thalmeier, P., 2. Phys. B 43 

(1981) 13. 
[15] Ole$, A. M., Phys. Rev. B 28 (1983) 327. 
[16] Old, A. M. and Stollhoff, G., Phys. Rev. B 29 

(1984) 314. 

[17] Ole& A. M. and Fulde, P., Phys. Rev. B 30 (1984) 
4259. 

[18] Andersen, 0. K. and Jepsen, O., Physdca B 91 
(1977) 313. 

[19] Gutzwiller, M. C., Phys. Rev. 137 (1965) 1726. 
(201 Ole& A. M. and Stollhoff, G., J. Magn. Magn. 

Mat. 5457 (1986) 1045. 
[21] Ole$, A. M. and Stollhoff, G., Eumphys. Lett. 5 

(1988) 175. 
[22] Holden, A. J., Heine, V. and Samson, J. H., J. 

Phys. F 14 (1984) 1005. 
[23] Kaiser, A. B., Old, A. M. and Stollhoff, G., Phys. 

Scr. 37 (1988) 935. 
[24] Tkt5glia, G., Ducastelle, F. and Spanjaard, D., J. 

Phys. France 43 (1980) 341. 
[25] Liebsch, A., Phys. Rev. Lett. 43 (1979) 1431. 
[26] StollhofF, G., J. Magtz. Magn. Mat. 5 4 5 7  (1986) 

1043. 
[27] Kakehashi, Y. and N d e ,  P., Phys. Rev. 8.32 

(1985) 1595. 


