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SEMICLASSICAL THEORY OF ION STOPPING(1)

R.M. MORE(2}) and K.H. WARREN

Lawrence Livermore National Laboratory, Livermore, CA 94550, U.S.A.

Résumé - Le calcul du ralentissement d'ions multichargés nécessite 1'élaboration de
nouvelles techniques pour 1la détermination des forces d'oscillateur. Nous
décrivons, ici, une méthode semi-classique donnant les é&léments de matrice
électroniques et les forces d'oscillateur correspondantes. La méthode est évaluée
par comparaison avec des résultats connus pour le potentiel de Coulomb. Elle est
numériquement robuste et raisonnablement précise pour toutes les transitions
considérées. Elle est appliquée par le potentiel de Bethe pour 1l'excitation de
1'hydrogéne.

Abstract - There is a need for a convenient method to calculate oscillator strengths for
highly charged ions for application to the calculation of stopping powers. In this paper we
describe a new semiclassical method for finding electron matrix-elements and oscillator
strengths. The method is tested by comparison with known results for the Coulomb potential
and proves to be numerically robust and reasonably accurate for all transitions examined.

It is applied to calculate the hydrogen Bethe excitation potential.

1 - STOPPING-POWER AND OSCILLATOR-STRENGTHS

We begin with a brief discussion of the connection between radiative opacity and fast-ion
stopping powers.]

The electromagnetic field of a fast ion is approximately equivalent to a cluster of virtual
photons carried along by the ion. When the ion penetrates a plasma target, some of the virtual
photons will be absorbed by electrons of the target material. After being absorbed, the virtual
photons are regenerated by the electric current of the fast ion, but the energy required for this
is taken from the center-of-mass motion of the ion and therefore the absorption of virtual
photons is equivalent to etectronic energy-loss. From this point of view, dE/dx can be regarded
das an average or mean opacity for absorption of virtual photons.

The gquantitative expression of this intuitive picture is obtained by calculating the absorption
of virtual photons. We use the frequency spectrum of virtual photons,
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Here Z] is the ion charge, v 1is its velocity, ¢ is the speed of light, a = ez/ﬁc is the
fine-structure constant and the coefficient a is a dimensionless number of order unity.2 We
employ a minimum impact parameter bmin = d/mv , as is normal for high-velocity ion

interactions.

The cross section per gram for line transitions of bound electrons of the target plasma is
determined by the bound-bound absorption opacity, which we can write in the notation of the

average-atom model,

2 ] P
Keb - :?eﬁf;; n§n| pn(1 - D:—'> Fope L(hv) (2)
There are also bound-free and free-free absorption processes. Pn is the number of electrons in
the lower shell of principal quantum number n and (1 - Pn,/Dn,) is a correction for partial
filling of states of the final shell n' (Dnl = 2n'2) . I{hv) 1is the line absorption profile,
which can be replaced by a delta-function, I(hv) = s(hv - (En' - En) ), and fn,n' is the
absorption oscillator strength, summed over states in the final shell n' and averaged over

states of the initial shell n.

The energy lost by absorption of virtual photons is then given by !

- = 1 by N(h) o K Oy (3)
This integral gives the following expression for the energy-loss:
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This result is the bound-bound part of the Bethe formula for high-velocity energy~loss.2

Several interesting physical questions arise at this point: Does it matter that the photons
considered are virtual photons rather than real photons? Should this slightly modify the energy-
conservation relation? When we apply these equations to plasmas, should we include the downward
transitions, in which an excited atom apparently gives energy to the fast ion? Could there be
stimulated emission by excited target ions caused by virtual photons of the fast ion? While we
are inclined to answer these questions in the affirmative, perhaps further study is required.

Usually one writes the stopping power due to bound electrons as

4
e
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where NB is the number of bound electrons per atom (ion) and I s the mean excitation-
jonization potential, defined by:
) n%‘ fnn‘ Pn(1 - Pn,/Dn,) Tog (En - En) + bf term
tog 1 = - — — (6)
)3 fnn' P“(1 Pn‘/Dn') + bf term
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At this point the photoelectric (bound-free) contribution is merely indicated in a schematic
fashion. Because of the f-sum rule, the denominator in Eq. (6) is simply NB =72-0, the
number of bound electrons.

The evaluation of I requires the energy-levels and absorption oscillator-strengths for
transitions between these eigenstates.3

There is a simple approximation for hydrogen-like jons, given by Bethe and Salpeter4 and Menzel
and Pekerissz

£ _ 32 1 1
, =
nn 33 n5 n‘3 (1/n2 - 'I/n'2)3

Equation (7) is accurate to within a factor of two, for example, the 1s » 2p matrix-element is
(ao = ﬁz/me2 = Bohr radius)

(7

4 a
2p _ __1(4y o _ ]
RSP = [y r e, dr= y: (3) 2 =1.2003 3 (8)
‘which gives an exact oscillator-strength of f(1s-2p) = 4 (2/3)9 = 0.4162 , while Eq. (7) gives
£(1,2) = 0.5808, which is 40% high. Equation (7) is more accurate for states with higher quantum
numbers.

o

Equation (7) can be derived by extrapolation of the Kramers' absorption cross-section for
Bremsstrahlung to negative energies of both initial and final states for the absorbing

e]ectron.1'6

Reference (1) also generalizes Eq. (7) to non-hydrogenic atoms, within the context of the
screened hydrogenic model. The electron energy-levels are taken to be

2 2
n

Q e

(o)
+E (9)
2ao n2 n

where On is the effective charge for electrons of shell n

Q =2-3Yao P
n mnm

m (10)
Ego) is an outer-screening correction (also a simple function of Pn, Qn ). Repeating the
extrapolation to negative energies with this representation of the energies, one finds:

04_02( ez/a 3
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For the hydrogenic case Ego) is zero and the effective charges Qn are equal to Z; in this
case the Qn‘s cancel and £q. (11) reduces to Eq. (7). For 1s-np transitions of partially
ionized heavy atoms, Eq. (11) can differ from Eq. (7) by large factors (5 to 20) and is
systematically more accurate.1 However Eq. (11) still differs from the best theoretical
calculations by factors of two due to quantum and relativistic effects.

For energy-loss calculation, Eg. (11) is not sufficient because n% -» n2' transitions are
important and subshell splitting ‘greatly affects the answer. One would like the detailed
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oscillator-strength which describes transitions between states of specified angular momentum,
f(nt,n'g").

The oscillator-strength is required for most calculations of atomic processes in hot plasmas:
calculation of stopping-power, calculation of emission and absorption of radiation and in many
approximate formulas for electron-impact excitation and ionization. For this reason we have
studied the possibility of developing a formula more detailed and accurate than Eq. (11) which
would retain its simplicity and generality.

Although this problem has attracted a great deal of attent1’on,7_18 the existing results are not
very satisfactory.

There are interesting semiclassical results based on Fourier analysis of the classical motion on
an average trajectory corresponding to average quantum numbers ne s nc of the e]ectron.”_]3
These methods assume In - n'l = An << n . For the hydrogenic system the result is an
expression involving Bessel functions related to Kramers' original result; with an optimal choice
of n. this method is very accurate. Unfortunately the results apply to the Coulomb potential,

and the generalization is not simple.

We are interested in two types of non-Coulomb potentials: those with atomic screening by core
electrons, and those with external plasma screening by free electrons and jons of a dense plasma
environment.

For these problems we have studied the use of WKB methods. However the available WKB methods

(e.g., refence 14) fail for simple problems such as the Coulomb potential or the linear harmonic
oscillator. Something better is needed.

2 - WKB APPROXIMATION FOR OSCILLATOR STRENGTHS

It is well-known that the semiclassical WKB approximation gives very good (exact) results for the
energy-levels of a nanelativistic hydrogenic ion. We will extend the WKB method to calculate
matrix elements. Our results are within a few percent of the exact answers for transitions in
the Coulomb potential, even for low quantum numbers such as the 1s - 2p transition.

The method developed here applies to other matrix-elements and other potentials without
modification. It has clear advantages for transitions to/from states with high quantum numbers
or for sums over many transitions. Because the method is numerically robust we believe it will
succeed for many other applications.

In the WKB theory for spherically-symmetric systems, the radial wave-function an is a sum of

incoming and outgoing waves,

_ 1 () L (9]
Yplr) =35 [wm + 'yna_, (12)
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W8 () = L oxp(x ilo(r) - w/41) (13)
va(r)

o(r) = I a(r') dr' (14)
1
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f r

where Enl is the energy eigenvalue, V(r) is the electrostatic potential, and ry = " (n, %)

is an inner turning-point, defined by qna(r1) = 0. The gquantity qni(r) is the wave-vector,
proportional to the radial velocity, and ¢ is the phase-integral, related to the action
function of classical mechanics. In our work we allow the radius r to be a complex variable.

The normatization Che of the wave-function can be determined by the WKB normalization rule
dE
'Cnmlz = r 2 = 2m2 dgg (16)
i 2 _dr T h
ryoaln)

To calculate the matrix-element of r with WKB wave-functions, we first write

R e Tre 12 el el im ar an
(-)

ng
wé?i, and Wé;) wgfi, , osci]]ate rapidly and symmetrically about zero. Physically, this can be
understood as follows: the integral we keep,

~Ny

This is a good approximation for large n, n' because the omitted terms, integrals of ¥

P e ar = el e o (18)

corresponds to the transition of an incoming n'e' electron onto an incoming n% orbit. This is
the transition invoiving the smaller change of momentum for the electron. The transition to an
outgoing n® orbit, corresponding to the integral

I [\yr(];)]* r \yr(]T;. dr = | ‘yr(];) r wr(lfi. dr (19)

has a much smaller probability because it requires a reversal of the electron velocity. The
photon momentum is negligible compared to the electron momenta, and so this reversal is extremely
unlikely. (The probability is not exactly zero because momentum is not conserved in the
electrostatic field of the nucleus.)

We use Eq. (17) for all values of n, n' and this is the core of our method.

The integrand in Eq. (17) has a saddle point at a complex radius r defined by

sad

G(rsad) =0 (20)

where G(r) = 6(r ; n%; n'%') 1is defined by
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For the Coulomb potential the saddle point can easily be found by a search (using Newton's rule)
starting at

400 + 1) aO/Z
(R RS

n? (n")

e—i(ofg) (22)

In many cases Eq. (22) is an accurate approximation to the saddle-point, and this is not
accidental, because o is determined by the condition that the initial and final orbits
should intersect with second-order contact. 1In any case, Eg. (22) js a reasonably good first
guess of the solution of Eq. (20}).

We note that the quantities G&(r), &'(r) and Foag 2re calculated directly from the
potential V(r) , which must be known for complex values of radius r .

The saddle-point integration gives

R:;g‘ - 5 Re [w(+)(r ) v w( ) V/;2«1

] (23)

Evaluation of this expression requires integrating Eq. (14) to find the phase ¢ at the
saddle-point. However the integration is not delicate because the integrand does not oscillate;
even coarse zoning produces reasonable results.

The oscillator strength is now

n‘e' _ 2m max(%, ') n'e! 2
fo = 2 (Eqigr = Eng) [3(2& + 1) } Rpg (24)

for dipole-allowed transitions n% = n' & + 1. The factor in brackets arises from a sum over

final states and average over initial states of given n,2 , n',8'.

In the next section we will give examples, tests and applications of these formulas. Aside from
simplicity and intuitive appeal, the main advantage of Eq.. (23) is the possibility of extending
it to non-hydrogenic systems where we obtain comparable results without a significant increase in
the complexity of calculation.

3 - RESULTS AND APPLICATIONS

First we illustrate the success of Eq. (23) in calculation of dipole matrix-elements for the
hydrogen atom.
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For the 1s » 2p transition, the WKB integral has a saddle-point at re = (1.576—1.6491)a0/2
where a, = .529 x 10_8 cm is the Bohr radius. Equation (23) gives

2p _

R]s = 1.251 (ao/Z)
2p _

f]S = 0.3913

The nonrelativistic exact values are R = 1.2903 ao/Z , £ =0.4162 while Kramers' formula
gives f = 0.5808 .

For matrix-elements of the series 1s » np the error grows but does not exceed 10%. As will
be seen from Table 1, other allowed dipole transitions have comparable accuracy. Extended
comparison for a large variety of transitions shows that the method works very well.

TABLE 1

Transition WKB R(n,%,n',2") Exact R percentage

difference
1s - 2p 1.2510 1.2903 3.04
1s - 3p 0.4782 0.5167 7.45
1s - 4p 0.2796 0.3046 8.21
s - 5p 0.1910 0.2087 8.49
2s - 3p 3.1439 3.0648 2.58
2p - 3d 4.6123 4.7480 2.86
2p - 3s 1.0019 0.9384 6.76
3s - 4p 5.7413 5.4693 4.97
3p - 4d 7.6298 7.5654 0.85
3p - 4s 2.6982 2.4435 10.42
3d - 4f 9.9253 10.2303 2.98
3d - 4p 1.4379 1.3023 10.47

The WKB method described here applies also to photoelectric absorption cross-sections. For
transitions 1s » ¢p  to the continuum state with energy ¢ > 0 , angular momentum % =1 , we
find a WKB cross-section which is consistently 15% lower than the exact nonrelativistic quantum
cross-section for all energies from the threshold at 13.6 eV to several hundred eV, i.e., over a
range of about 106 in cross-section. For transitions from higher bound-states the agreement is
better.

Using the WKB results for line and photoelectric absorption, we have evaluated the Bethe

logarithm for stopping of fast charged particles. Our result and the corresponding comparison
values are:

T (WKB) = 14.5 eV
I (Exact) = 14.8 eV
T (Kramers) = 14.2 eV
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In evaluating this sum, we corrected the WKB and Kramers' values for their failure to exactly
obey the f-sum rule. This correction is made by evaluating the sum of all oscillator strengths
for transitions from the initial 1s state and then dividing by this to renormalize the oscillator
strengths as in Eq. (6). Because the error in the WKB f-number is essentially a constant factor
0.85, at least after the first few transitions, the result of this correction is a rather

accurate stopping-number.

A key application of our method will be to try to develop a rigorous fundamental justification
for the well-known local-density model for stopping powers of fast charged particles. We have
found that the matrix-element responsible for either bound-bound or photoelectric transitions
reduces to a product of wave-functions evaluated at a single point, the saddle point. The sum
over many transitions can then be transformed into an integral over saddle-points, and this
integral is directly comparable with that assumed in the local-density theory.

We also applied our method to calculate quadrupole matrix-elements in the Coulomb potential, and

find good agreement with the results of Oumarou et a].]g

Does the method apply to non-Coulomb potentials, as in heavy atoms or ions? We have made a
detailed study of Molybdenum ions in all charge states and find that the WKB method succeeds in
reproducing the large changes in oscillator-strengths produced by bound-electron screening.

There have been a number of studies of the effect of plasma screening on the oscillator strengths
for bound-bound and bound-free transitions.zo'z] It is generally found that the strengths of
individual transitions n,% » n',%' are strongly reduced as the state n',%' comes close to the

(Towered) continuum.

For the Debye-screened Coulomb potential,

v(r) = (Ze/r)exp(-r/D) (25)
Hohne and Zimmerman give some representative calculations. We compare with one of their cases:
0=20 a, D=c ratio
o L0125 .0244 1.95 (26)
f?§a4p .0145 .0290 2.00

The agreement is again very impressive, considering the simplicity and convenience of the WKB
calculation. In this case, while the oscillator strength f(1s » 4p) is reduced by a factor of
two the saddle point is only changed a few percent by plasma séreening. The main plasma effect
is on the normalization of the WKB wave-function; in the screened Coulomb potential the 4p
state relaxes outward and has reduced overlap with the inner 15 wave-function.
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CONCLUSIONS

In this paper we have simply presented results of calculations based on Eg. (23). However the
success of these calculations points to a surprising and important fact about semiclassical
quantum mechanics. Results from Eq. (23) are better than those which are obtained if we
normalize the wave-functions and compute the integrals directly according to the
quantum-mechanical rules. That is to say, Egs. (16) and (17) differ somewhat from the normal
quantum rules, through the omission of terms 1ike that in Eq. (19), and also work better.

We do not advocate changing the very successful rules of quantum mechanics, of course, but rather
interpret the resuit as indicating that the omitted terms contain the most inaccurate portion of
the WKB approximation, and physically correspond to processes which have very Tow probabilities.
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