THE DYNAMICS OF ADATOM DIFFUSION ON W(211)
S. Wang, G. Ehrlich

To cite this version:
S. Wang, G. Ehrlich. THE DYNAMICS OF ADATOM DIFFUSION ON W(211). Journal de Physique Colloques, 1988, 49 (C6), pp.C6-263-C6-263. <10.1051/jphyscol:1988644>. <jpa-00228141>

HAL Id: jpa-00228141
https://hal.archives-ouvertes.fr/jpa-00228141
Submitted on 1 Jan 1988

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
THE DYNAMICS OF ADATOM DIFFUSION ON W(211)(1)

S.C. WANG(2) and G. EHRLICH

Materials Research Laboratory and Department of Materials Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A.

Over the last two decades, observations of individual metal atoms with the field ion microscope have yielded considerable quantitative information about diffusion on metal surfaces. The temperature dependence of the observed diffusivities D can generally be represented in terms of the activation energy E_A by $D = D_0 \exp[-E_A/kT]$. The prefactor D_0 is dependent upon the dynamics of the jump process; it is related to the entropy of activation S_A and the jump length ℓ through $D = v\ell^2 \exp[S_A/kT]$, where v is an attempt frequency.

For the simplest model of surface diffusion, in which atoms carry out a random walk between nearest-neighbor sites, D_0 should be on the order of 10^{-3} cm2/sec. This is not what has been found in independent experiments in several different laboratories. On W(211), for example, prefactors varying over more than five orders of magnitude have been reported, suggesting significant differences in the details of the jump processes. To explore the dependence of prefactor D_0 upon the chemical identity of the adatoms we have carried out extensive observations on the diffusion of single atoms Re, W, Mo, Ir, and Rh on W(211) /1/. All measurements have been done on the same crystal sample, with special care to establish a reliable temperature scale. The results below are surprising:

<table>
<thead>
<tr>
<th></th>
<th>Re</th>
<th>W</th>
<th>Mo</th>
<th>Ir</th>
<th>Rh</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_A (kcal/mol)</td>
<td>19.2±.5</td>
<td>19.0±.6</td>
<td>16.4±.5</td>
<td>15.4±.4</td>
<td>12.4±.4</td>
</tr>
<tr>
<td>$D_0 \times 10^3$ (cm2/sec)</td>
<td>0.73</td>
<td>7.7</td>
<td>2.0</td>
<td>0.61</td>
<td>3.3</td>
</tr>
</tbody>
</table>

The prefactors for all the atoms studied are much the same, within the statistical errors, and are close to the expected value of 10^{-3} cm2/sec. From the magnitude of the measured D_0 values it appears that for the atoms Re through Rh, diffusion takes place by nearest-neighbor jumping, a mechanism that has been confirmed by independent observations. The activation energy for diffusion of the atoms studied on W(211) correlates with the heat of sublimation ΔH_v of the atoms from their own crystal, amounting to $\sim 1\Delta H_v$.

(1) Supported by the Department of Energy under Contract DE-AC02-76-ER01198.
(2) Visiting Research Professor, Shaanxi Teachers University, PRC.

REFERENCES