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Rdsumd - On donne une solution exacte et explicite qui dCcrit la formation d'une 
bande de glissement dans une thCorie des matdriaux rigide-plastiques qui s'adoucissent 
au de 1& d'une certain dkformation. La solution donne une bande de glissement dont la 
largeur est dCterminCe par les paramktres du matCriau, et non par les longueurs d'ondes 
spatiales associCes aux pertubations de la configuration homogkne initiale. Les lois de 
comportement mkcanique de la thCorie ne contiennent pas la vitesse de dCformation 
explicitement, mais les paramPtres de la thCorie ddpendent de cette vitesse dans les 
applications. La thCorie doit fournir un modkle utile, bien qu'approximatif, pour le 
comportement des mktaux ductiles dans les processus quasiadiabatiques. 

Abs t rac t  - An explicit and exact solution describing the formation of a shear band 
is given in a theory of rigid-plastic materials that soften after a certain amount of 
deformation. The solution yields a shear band whose width is determined by material 
parameters, not by spatial wavelengths associated with perturbations of the homo- 
geneous initial configuration. Although the constitutive relations of the theory do 
not contain the rate of deformation explicitly, the parameters in the theory will be 
rate-dependent in application. The theory is expected to supply a useful, albeit approx- 
imate, model for the mechanical behavior of ductile metals in quasiadiabatic processes. 

1 - INTRODUCTION 

As the yield stress of a ductile material is expected to decrease with increasing temper- 
ature, even if a material hardens with accumulated plastic strain in isothermal deformations, 
it can ;;how apparent strain softening in processes rapid enough to be nearly adiabatic. Strain 
softening, whatever its cause, can destabilize homogeneous deformations. Hence, one expects 
that when the strain accumulated in an initially homogeneous motion attains a level at which 
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subsequent flow must decrease the yield stress, further strain will be localized in narrow 
bands. This expectation is the basis of the accepted explanation of the shear bands observed 
when metals are deformed a t  ballistic rates.' A goal of our research on strain localization has 
been the development of physically acceptable constitutive relations for which the problem of 
producing exact solutions showing shear bands is tractable. In this note we summarize some 
of our results.' 

Like other deformations, the formation of a shear band is influenced by the viscous stresses 
and internal relaxation phenomena that accompany plastic flow, but such intrinsic rate effects 
do not appear vital for occurrence of the phenomenon. Essential to a theory of shear bands 
is an  expression of the ability of plastic flow to lower the stress required for further flow. 

In the theory we have been developing, this is expressed by using constitutive relations that  
describe a rigid-plastic material with a yield function 4 that, in motions of shear, depends on 
the total variation 7 of the shear strain y and decreases with increasing 7 when 7. exceeds 
a critical value 7, Of importance for the construction of a theory that can describe such 

severe manifestations of strain localization as shear bands is the need to render mathematical 
the physical idea that when strain varies rapidly from place to place this variation must itself 
influence the stress. In regions in which 7 has large spatial derivatives of order greater than 
one, there should be a force playing a role similar to that of the capillary forces that act to 
oppose increases of interfacial area in theories of phase transformation and crack propagation. 
This force is expected to mollify the growth of inhomogeneities without totally suppressing 
them. We have found that the simplest way to account for such a force is to add a term 
linear in the second spatial derivative of 7 to the classical expression for the stress in a flowing 
rigid-plastic material. 

With the above observations as background, we now state, in the framework of unidimen- 
sional motions of shear, the constitutive assumptions and field relations we have studied. The 
usefulness of these assumptions should be judged by the simplicity and success with which 
they account for the important features of the phenomena they are intended to explain. 

2 - CONSTITUTIVE ASSUMPTIONS 

The present discussion is confined to motions for which the flow is in the y-direction of 
a Cartesian system, and the displacement u in that direction is a function of x and t ,  with t 
the time that has elapsed since the body was in a stress-free undistorted reference state with 
u = 0. The shear s t ra in  y and the rate of shear yt are 

For each t 2 0 and each x, the accumulated shear s t ra in  ? ( x , t )  is the total variation of the 
shear strain a t  x, considered a function on [0, t]:  

The shear stress T is the (y, x)-component of the Cauchy stress tensor. 



Each material of the class we consider is characterized by a positive constant c and a yield 
function 4 that is positive on an  interval of the form (0, =jF);(') these enter the relations: 

if rt = 0, then 171 < 4(7); (2.4a) 

if yt # 0, then 171 2 4(7) and T = [ 4 ( ~ )  - c~, , ]  (2.4b) 
1% 1 ' 

The following assertions are easily derived consequences of the basic constitutive assumptions 

(2.4): 

if yt # 0 and r y t  > 0, then T,, < 0; (2.5) 
if I T I  < 4(7), then y, = 0; (2.6) 

Yt if 1.1 > d(;i.), then y, # 0 and T = [4(?) - c"(,] - 
171 I ' (2.7) 

The idea that, after a certain amount of accumulated strain, plastic flow can lower the 
stress required for further flow is made mathematical by assuming that 4 attains a maximum 
at a point 7, in (0, TF). The simplest smooth function 4 with 4(O) > 0, 4'(0) > 0, c$'(T,) = 0, 
and d"(?,,) < 0 is the quadratic, 

in which a ,  Tm, and 4, are material constants(3) obeying 

Of course, 4, is the maximum yield stress, 4(Trn), and is positive. With 

we have 
lim 4(7) = 0, 

7 - - i ~  

and [0, TF) is the interval of values on which (b is positive. As 7 approaches TF, the largest 
value of  IT^ that the material can sustain without flowing approaches zero. A body with 
7 = ; i . ~  a t  a plane x = constant would appear to have zero strength for shear in that plane 
and would be said to have "failed" or "lost coherence". 

If we assume that the shear stress T is a function of x and t ,  that the pressure in the 
sample does not vary with z ,  that the applied body forces are conservative, and that inertia 
can be neglected, balance of forces yields 

(2) The number 7~ = sup(7 ( 4(7) > 0) is called the accumulated strain at failare. There is 
no a priori reason to suppose that 7.F is not infinite, i.e., 4 may be positive on [O, w), 
but when 4 has the special form seen in equation (2.8) with a ,  y,, and dm as in (2.9), 
7~ is finite. 

(3)  In practice, a ,  ?,,,, and (b,, will depend on the rate of deformation and the initial 
temperature. 
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We may suppose that the material lies between and adheres to plates at  the planes x = d l ?  
and x = -d/2. 

In the following section we give an  explicit solution we have obtained2 describing the 
nonsteady shearing motion generated by moving the bounding plates in opposite directions in 
the absence of body forces and pressure gradients; for such a motion b(t) is zero, and hence 
the shear stress is a function of time alone: 

The solution is exact under the assumption that the separation of the bounding plates is so 

large that we may concentrate attention on regions near the plane x = 0 and take d to I,? 
infinite. 

We have also treated channel flow, that is, a flow for which d is finite, the plates arc 

stationary, and it is the application of a driving force that causes the material to movt, in 
the y-direction. Flow fields that are symmetric about the plane x = 0 and for which T O  = 0. 
so that (2.12) becomes T = -b(t)x, with b(t) the driving force pcr unit volume, arc given i11 

Hodgdon's doctoral thesis3 and in a paper now in press4. The space alloted here docs not 

permit a discussion of channel flow. 
When 4 has the form (2.8), the constitutive assumptions (2.4) and the field equation 

(2.12) are together equivalent to the assertion that for all x and t: 

if yt(x, t )  = 0, then IrO(t)  - b(t)xl < d m  - cu [?(z, t )  - ;ym12 ; (2.14a) 

if yt(x,t) # 0, then l~O(t)  - b(t)xJ 2 dm - a [?(z , t )  - ?,I' 

and i O ( t )  - b(t)x = [ d m  - 0 [ i (x .  f) - i,]' - ~?,,(x, t)]  t. (2.14b) 
i I 

We seek motions, compatible with the initial condition u(x, 0) = ?(x, 0) = 0, that obey (2.14) 
for all t in [0, tF)  and all x ;  here tF  is the time of failure in the sense that for some value X F  
of 5 ,  

lim ?(xF, t )  = TF, (2.15) 
t - t p  

and 0 5 ?(x , t )  < yF for a11 t in [O,tF) and all x. 

3 - THE SHEAR-BAND SOLUTION 

For the case in which b = 0 so that (2.13) holds, we have found, for d infinite, an exact 
solution of the relations (2.14) obeying the following conditions: (a) y, agrees in sign with T O ,  

i . e . ,  for each x and t, 7"(t)yt(x, t) 2 0; (b) for each t ,  i ( x , t )  is a bounded even function of 2 
which attains its maximum at  x = 0; (c) IT'(.)[ is a continuously differentiable function; (d)  
l~O(t)l increases from 0 to IrO(tm)l  = dm as t varies over an  interval [0, t,] with t, > 0; lrO(t)l 
decreases with increasing t for t > tm;(4) (e) y(x, t)  is continuous in x and t; and (f) yi(x,  f), 
Tt(x, t )  and 7,,(x, t) are bounded and piecewise continuous in x and t .  In this solution, which 
describes the shearing of a large volume of material between widely separated moving plates, 

( 4 )  We assume that dlro(t) l /dt  is (strictly) positive for t in [O,t,,) and (strictly) ncgativc for 
t in ( t m r t F ) .  



the hotion is homogeneous up to time t ,  after which strain concentration occurs near the 
center plane, x  = 0. 

Let t o  be the time a t  which lrO(t) l  first attains the value d ( 0 ) .  Our solution is such 
that u ( x ,  t )  = ~ ( x , t )  = ;Y(x, t )  = 0 for all x and each t  in [O,to], i.e., there is no motion 
until IrO1 exceeds d ( 0 ) .  For t  in ( to ,  t,] the motion is one of homogeneous shearing with, 
for all x ,  ~ ( x ,  t )  = T O ( t ) ,  where T O ( t )  is the smaller of the two positive roots of the equation 

4(q0(t))  = I."(t)l: 

When lrO1 decreases from its maximum value d m ,  the strain field does not remain homo- 
geneous, but starts to show a shear band. That is, for each t  > t ,  there is a band, 
- s 8 ( t )  < x  < x * ( t ) ,  such that y f ( x , t )  # 0  for x  in this band, i.e., for 1x1 < x * ( t ) ,  and 
r f ( x ,  t )  = 0  for x outside, i.e., for x  > (x*( t ) l .  The half-width x f ( t )  of this band of active 
shearing decreases with increasing t  and is given by the formula(5) 

r ' ( t )  = 0 . 8 8 9 5 2 ~ ' / ~ ( ~ - ' / ~  [$ ,  - J ~ o ( ~ ) J ] - ' / ~ ,  ( t  > t,). (3.2) 

For each t  > t,, T r r ( x ,  t )  < 0  and T t ( x ,  t )  > .O wherever 1x1 < x * ( t ) ,  and 

lim y,,(x, t )  = lim ' j . t(x,  t )  = 0. 
121-Z-- Jtl-z.- 

In the shear band, we have the following expression(6) for 7: 

I - cn(v(t)zlm) 
' j . ( x , t )  = 7,  + 6( t ) ' I2  I , for t > t ,  and 1x1 5 Ix*(t)l; (3.4) 

1  + c n ( v ( t ) x  ( m )  

here 

The dimensionless quantity 6 ( t )  is a measure of the decline of the magnitude of the shear stress 
from its maximum value; cn is the indicated Jacobian elliptic function(7) with m = 0.979681. 
The numbers X and q arise in the theory of elliptic integrals and are related to m by the 

and hence q = 2.324236, and X = 1.90632. For ;y a t  points outside the shear band, we have(g) 

0 .79142~ 
T ( x , t )  = 7, + - , for t > t ,  and x  2 Ix*(t)l. 

4 x 1 2  

(5) Ref. 2 ,  eq. (3.49). 
Ref. 2, eq. (3.51). 

(7) See, e.g., Milne-m horns on^. Here m = L2 with t the modulus of the elliptic function. 
The present 7 is written 70 in Ref. 2. 

(" Ref. 2, eq. (3.59). 
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The formula (3.2) for x*(t) implies that when lrO(t)l is close to 4,, i.e., when 6(t) is small, 
the band of active shearing (where yt # 0) is wide; in the limit t -+ t: this band extends 
from x = -oo to x = oo. As  IT"(^)) drops below 4, the band narrows rapidly, but, as (ro(t)l 
continues to drop, the band width, 2x*, eventually diminishes slowly, i . e . ,  remains nearly 
constant, for x* varies with T O  as (4, - 170 ))-'I4. While this is happening, the accumulated 

shear a t  the center of the band, T(O,t), is increasing with time as [dm - 1~"( t )1] ' /~ ,  for (3.4) 
and (3.5) yield,('0) 

Because, for each t, $0, t) is the maximum value of 7. in the body, 7~ is attained at  x = 0, 
i.e., X F  = 0. I t  follows from (2.10) and (3.8) that  IT"(^)( at  the moment of failure, t F ,  is(") 

At that moment, the half-width of the band is, by (3.2), 

The assumed smoothness of ( T O (  as a function of t does not preclude cases in which 7" 
suffers sudden jumps from ~ " ( t )  to -ro(t) .  However, for metals undergoing deformation at 
ballistic rates, the important case is that in which 7" does not change sign. If 7" is never 
negative, then (3.1) and (2.3) yield y(x,t)  = 'j.(x,t), and if we choose a frame so that the 
displacement u is always zero a t  x = 0, we have 

It  follows from (3.4)-(3.7) and (3.11), that, for t > t,,(12) 

for 0 5 x 5 x*(t); (3.12a) 

u(x, t )  = 61/4(t)(c/20)1/2 [1.25797'1,6(t)-1/2 + 2.305901 , for x = x*(t); (3.12b) 

u ( - x , ~ )  = - u ( x , ~ ) ,  for all x 2 0. (3.12d) 

(I0) Ref. 2, eq. (3.53). 
(''1 Ref. 2, eq. (3.54). 
(I2) Ref. 2, eq. (3.67). In order to write that expression in its present form, we use the value 

1.25797 for the number [* defined in Ref. 2 and find that this yields cn (~3- ' /~ [* lm)  = 
0.465840 and ~ ( X 3 - ' I ~ ( * l m )  = 0.89003. E (  . Im) is given by an elliptic integral of the 

second kind; i.e., E(wlm) = ~ , ( l  - msin2 e)1/2de, with $ = sin-' (sn(u7lm)). 



Such displacement fields are shown in the accompanying Figure, where I is the ordinate, 
"(3, t) is the abscissa, and the material parameters have been given values, cr = 1,. 4, = 10 
z,,,, = 0.05, c = 0.1. The graphs seen there may be thought of as pictures of a scribe line 
that lies along the x-axis when t = 0. The solid line shows the scribe line at the time t, at 
which rO( tm)  = 4,; at that time the line is straight, as it is at earlier times; at later times 
it is curved. The dotted curve depicts the deformed scribe line at the time tF at which the 
material fails. 

Figure. Graphs, based on equations (3.12a)-(3.12d), showing the displacement u in the 
Y-direction as a function of z a t  various times during shearing between widely separated 
parallel plates. 
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