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ON SYSTEMATIC ERRORS IN CHARACTERIZING CHAOS 

F. MITSCHKE, M. MOLLER and W. LANGE 

Institut fiir Quantenoptik, Universitat Hannover, 13-3000 Hannover 1, 
F.R.G. 

- Les erreurs systematiques dans la determination de la dimension e t  de I'entropie des 
attracteurs chaotiques ont et6 6tudies. La limitation de bande passante conduit a une sur- 
estimation, la limitation de r6solution B une sousestimation de la dimension. Dans I'un e t  
I'autre cas I'entropie ne semble pas affecthe. 

A b s m  - Systematic errors in the determination of dimension and entropy of chaotic attractors 
are investigated. Bandwidth limitation leads to an overestimate, resolution limitation to 
an underestimate of dimension. The entropy seems unaffected in either case. 

INTRODUCTION 

An important step in the characterization of chaotic dynamics is the determination of the dimension 
of the underlying attractor. Many laboratories have adopted a method originally proposed by Grassberger 
and Procaccia /I/, that requires only a single-variable time series and yields the correlation dimension 
D2 and the order-2 entropy K2 /2/. The method is reasonably robust in the presence of noise and 
still works with relatively small data sets /3/. I t  is not immediately obvious, however, whether 
spectral filtering or digitizing error, as encountered in a realistic data acquisition, are tolerated. 

Badii and Politi pointed out recently /4/, that a low-pass filtering of the signal,, e.g. due to 
insufficient bandwidth of the measuring apparatus, results in an overestimate for the dimension. Very 
recently they tested their prediction by simulating spectral filtering on existing experimehtal data 
/ 8 / .  Independently we pursued the question how well this theory would apply t o  an actual experimental 
situation, with the additional restraints of small data sets with low digitizing resolution. We find 
the predicted influence of low-pass filtering on the dimension /9/ and in addition we present 
evidence that low resolution can lead to an underestimate of the dimension. The entropy seems 
unaffected from either error. 

To understand the effect of filtering, consider the case of a chaotic signal x(t),  passed through a 
single-pole (first order) low pass filter as modeled by 

with the "filter output" At ) .  If the chaos-generating process has a phase space of dimension d, the 
phase space of the combined system (including the filter) is increased to  d+l, and so  is the number 
of Lyapunov exponents. The additional exponent, -q. is negative, and q is equal to  the filter roll-off 
frequency. Assuming the validity of the Kaplan-Yorke conjecture /S/, r) will increase the information 
dimension Dl  determined from signals at the filter output (i.e. from a time series of z values), 
provided that 0 -r)  > A_. Here A- denotes the negative Lyapunov exponent that appears in the 
denominator of the Kaplan-Yorke formula. The lower the filter roll-off frequency, the more pronounced 
is this increase. In the limit I ]  -> 0, the filter becomes an integrator, and the increase is predicted 
to  be as much as one over the unfiltered original : DI( q = 0 1 = Dl( q = w 1 + 1. 

Since only the negative Lyapunov exponents are affected, we expect that the positive ones and thus 
the entropy K, will remain unchanged in the filtering process. With K7 being an upper bound for K2 
/ 6 / ,  i t  is reasonable to  assume that K2 will not depend strongly on r). 

EXPERIMENT ON A TIME-CONTINUOUS SYSTEM 

For our experiment, we used the system described in /7/ as a source of chaotic signals. I t  consists 
of an electronic circuit simulating a hybrid optical device and is described very well by the 
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differential equation 
... 
u + a - i j  + b-Cj + c . ~  = d . (  u - e 12 . 

with a,b,c,d,e constant coefficients depending on component values and parameter choice. For our 
present purpose, we picked a set of parameters such as to  obtain mildly chaotic behaviour /9/. 

We passed the output: signal U of the electronic circuit through a low-pass filter of selectable RC 
time constant. At the filter output, we measure with a LeCroy 9400 transient digitizer which has 8-bit 
resolution and can store up to  32000 data points in a row. Strictly speaking, its bandwidth of 125 
MHz contributes a second pole to  the overall frequency response, with q s lo4. This value is high 
enough to be safely considered infinite. The intrinsic noise in the circuit (-85 dB) is negligible a t  8-bit 
resolution. 

From the acquired data, D2 and K2 were evaluated with a Grassberger-Procaccia type program. 
Typically, the calculations were done with 5000 data points and embeddin~ dimensions up to 20; the 
length scales used in the evaluation (the "scaling region") range from 2-& to  2-*.'. 

FIG, 1.. D, values for low-pass filtering with different roll-off frequencies q. The solid 
line shows the predicted D1(q).Note change of scale at  the dashed lines. 

We find K2 = 0.067, independent on q. As i t  must be, this value is smaller than K1 = 0.081, which 
was previously determined independently. The results for D2(q) are shown in Fig. 1, together with the 
prediction according to  /4/ (solid line). It is perfectly reasonable that all data points lie below the 
solid line, because Dl is an upper bound for D2' However, the points clearly follow the trend of the 
solid line, and for q -> 0, D2 indeed tends to  D2(q = 0) = D2(q = m) + 1. Obviously,. the result of 
Badii and Politi is confirmed. 

NUMERICAL EXPERIMENT ON A TIME-DISCRETE SYSTEM 

Filtering can also be applied to  iterative maps. For a test we used the well-known Hbnon map with 
an added filter equati~on: 

with the standard values A=1.4 and B=0.3. 

From several thousand iterations done with 32-bit precision for several values of q, we stored the 
Z values as "mother" files. As we intended t o  use the same procedure as for the experimental- data. 
we created files of 8-bit resolution from the "mother" files and we determined K2 and D2 from these 



"daughter" files the same way as above. Again K2 is found to  be independent of q. The result for 
D2 is shown in Fig. 2, in comparison with the predicted D r ~ D 1 ( r ] )  (solid line). There is the same 
trend as above, and the theory by Badii and Politi is confirmed. 
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PIG, 2. Same as FIG. 1, but for the Henon map with simulated low-pass filtering. 

Comparison of our D2 value for the unfiltered Henon map with the known literature value / 6 /  
showed that it was underestimated. In order to find out whether this was due to  quantization error, 
we calculated D2 and K2 from "daughter" files of n-bit resolution, with n ranging from 6 to  12, 
that had been created from the same "mother" file. To avoid possible problems related t o  the attractor 
lacunarity, we kept the same scaling region throughout. We found that the dimension seems to  
depend systematically on n, with an error increasing with decreasing resolution. This is demonstrated 
for p = m in Fig. 3. 
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PIG. 3. D, values for the (unfiltered) HBnon map as a function of bit resolution. The 
dotted line indicates the literature value of 1.224 for Dz evaluated with high precision. 

CONCLUSION 

Given that any measuring device has fMte bandwidth, data acquisition involves low-pass filtering by 
necessity. A filtered chaotic signal, however, corresponds t o  a more or less distorted attractor / 9 / .  
Evaluating such a signal may lead t o  an overestimate for the dimension. Moreover, any digitizing 
equipment has a limited resolution. This introduces a quantization error which may lead to  an under- 
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estimate of D2. I t  follows that for an accurate determination of dimension of chaotic attradors, it 
is important t o  have sufficient bandwidth and resolution. On the other hand we observe that the 
entropy is not affected by either systematic error; it may thus give a much better criterion to 
distinguish chaos from noise. 

We thank N. B. Abraham for valuable discussions. 
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