CALCULATED COMPTON PROFILES:
EXPERIMENTAL CHECK OF THE DEVIATION FROM THE IMPULSE APPROXIMATION IN
GRAPHITE

A. Issolah, J. Chomilier, G. Loupias, B. Levy, Alberto Beswick

To cite this version:

A. Issolah, J. Chomilier, G. Loupias, B. Levy, Alberto Beswick. CALCULATED COMPTON
PROFILES: EXPERIMENTAL CHECK OF THE DEVIATION FROM THE IMPULSE AP-
PROXIMATION IN GRAPHITE. Journal de Physique Colloques, 1987, 48 (C9), pp.C9-847-
C9-850. <10.1051/jphyscol:19879151>. <jpa-00227263>

HAL Id: jpa-00227263
https://hal.archives-ouvertes.fr/jpa-00227263
Submitted on 1 Jan 1987

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci-
entific research documents, whether they are published or not. The documents may come from
teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires publics ou privés.
CALCULATED COMPTON PROFILES : EXPERIMENTAL CHECK OF THE DEVIATION FROM THE IMPULSE APPROXIMATION IN GRAPHITE

A. ISSOLAH*, J. CHOMILIER*, G. LOUPIAS***, B. LEVY** and A. BESWICK***

*Laboratoire de Minéralogie-Cristallographie, Universités Paris VI et VII, CNRS UA-09, 4, Place Jussieu, T 16, F-75252 Paris Cedex 05, France
**Groupe de Chimie Quantique, Laboratoire de Physico-Chimie du Rayonnement, Bât. 337, Université Paris-Sud, F-91405 Orsay Cedex, France
***LURE, CNRS-CEA-MEN, Bât. 209D, Université Paris-Sud, F-91405 Orsay Cedex, France

RESUME

Pour obtenir les profils Compton de valence du graphite, on soustrait des profils expérimentaux un profil d'électrons de cœur du carbone soit impulsionnel SCF soit quasi SCF. Les profils de valence ainsi obtenus diffèrent en amplitude d'environ 2%, par contre l'anisotropie reste inchangée.

ABSTRACT

To obtain the valence Compton profiles of graphite, a carbon core electron profile, either impulse SCF or quasi SCF, is subtracted from the experimental profiles. The valence profiles obtained are different by about 2% in amplitude but the anisotropy remains unchanged.

In solid state physics, the measurements of the Doppler broadening of the inelastically scattered X-rays, the Compton profiles (CP), are particularly sensitive to the behaviour of the outer, loosely bound conduction or valence electrons. The experimental CP are easily analysed in the Impulse Approximation (IA) assumption. In this case, the total CP is just the sum of all the mono-electronic CP:

\[J_{\text{tot}}(q_z) = \sum_{i=1}^{N} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left| \chi_i(q) \right|^2 dq_x dq_y \]

where \(q_z \) is the projection of the electron momentum on the scattering vector \(\hat{z} \). \(\chi_i(q) \) is the Fourier transform of the wave function of the target electron \(i \); no care is taken of the final state. Only this total profile is measured; so, in order to compare the experimental directionnal Compton profile (DCP) to the calculated one, it is necessary to subtract a calculated core profile from the first one, (Fig.1), because most of the solid state calculations lead only to the valence and conduction profiles.

Recent measurements on graphite are performed at LURE-DCI with an incident energy of 12858 eV and a scattering angle of 135°. The transferred energy at the Compton peak is only twice the ionisation threshold of the 1s carbon electron. Under these conditions, although the Impulse Approximation may be valid for the loosely bound valence electrons, this is not the case for the core ones. So, in order to analyse the experimental valence CP, the deviation from the IA has to be taken into account.
The comparison between the experimental profiles and the calculated ones, leads to a discrepancy that might be decreased by an improvement either in the calculations (1) or in the data treatment. In this comparison, we noticed that the experimental anisotropy (i.e., the difference between two DCP) is shifted with respect to the calculated one (2). This might arise either from the core sp2 hybridization, or from the deviation to the IA. To have an order of magnitude of the sp2 hybridization effect on graphite, we have calculated the molecular orbitals of the radical CH\textsubscript{3}, and it was found it is similar to the carbon 1s orbital, slightly perturbed by hydrogen sites. Compton profiles calculated within the IA along the C-H axis, and two directions perpendicular, only reveals deviations (in amplitude) less than the statistical accuracy at the center of the profile.

Since the coupling with the electromagnetic field is weak, we may calculate the CP by using the lowest order Born approximation.

Then, in the independent electron and frozen core approximations, the CP - as in the impulse case - is a sum of one electron contributions:

\begin{equation}
J_{\text{tot}} = \int_1 \int_f \left| \langle \phi_f | \exp(iKr) | \phi_i \rangle \right|^2 \delta(e_f - e_i - \Delta E) \tag{2}
\end{equation}

where \(i \) and \(f \) refer to initial and final states; \(e \) the energy of the electronic state; \(\Delta E \), the energy transferred from the photon to the electron. Different approaches have been presented to explain the deviation to the IA in the case of Compton scattering (3) or electron scattering (4).

The difficulty in calculating the CP using Eq. 2 arises from the final state \(\phi_f \) of the electron. To compute the core profile of the carbon, we have evaluated numerically \(\phi_f \) using the SCF potential of the 1s state without exchange terms. This is an improvement compared to a Coulomb wave final state (5).

This quasi-SCF final state leads to a Compton core profile notably different (Fig. 2) compared to the impulse one:

- the maximum of the CP is at \(q_{\text{max}} = 0.1 \) u.a (this deviation is called the "Compton defect");

- the principal discrepancy comes from the amplitude of the maximum of CP which is 13% lower than the impulse one (Fig. 3).

These two effects can be due respectively to:

- the variation of \(V(r) \) around \(F \) is large and goes from \(-Z/r\) (\(Z \) nuclear charge) for \(r \) close to zero, to \(-1/r\) for \(r \) close to \(r \) (0, \(r \) are the integration boundaries of the transition matrix element),

- \(q_{\text{max}} \), which is related to some mean value \(V(F) \) of the potential experienced by the electron in its final state;
The experimental valence (or conduction) Compton profile obtained by the subtraction of this OSCF core profile from total one is:
- Symmetric, since the OSCF CP is flat and very slightly asymmetric about \(q_z = 0 \), the displacement of the valence Compton Peak is negligible (or cannot be evaluated because of the statistics of the experimental results). So the anisotropy of the valence electron is unchanged when subtracting core OSCF profile or impulse one;
- Decreased in amplitude, near \(q_z = 0 \) and consequently increased (for normalization reasons) at large \(q_z \) as shown on figure 4.

Therefore, the so-corrected valence profile leads to an enhancement of the difference with the calculated one as illustrated on the figure 5. This discrepancy is discussed in term of correlation effects [6].
In the case of carbon atom the overlaps between the QSCF \(\psi_f \) and \(\psi_{1s}, \psi_{2s}, \psi_{2p} \) atomic orbitals are respectively \(6.8 \times 10^{-6}, 1.2 \times 10^{-6}, 1.6 \times 10^{-3} \) at \(q_z = q_{\text{max}} \) and decrease with increasing \(q_z \); so the exchange terms are probably not very important. Although the core graphite have the same behaviour than the 1s carbon one, this is not the case for the valence electrons. So, to evaluate the coulombic part of the potential in graphite, one should use Bloch waves describing valence electrons instead of atomic orbital (2s, 2p). A question then arises wether this latter description changes the atomic potential and thus the core profile for graphite.

REFERENCES