

L X-RAY FLUORESCENCE CROSS-SECTIONS MEASUREMENTS FOR ELEMENTS 56≤Z≤66 IN THE ENERGY RANGE 11-41 keV

S. B. Singh, S. Kumar, D. Mehta, M. Garg, N. Singh, P. Mangal, P. Trehan

► To cite this version:

S. B. Singh, S. Kumar, D. Mehta, M. Garg, N. Singh, et al.. L X-RAY FLUORESCENCE CROSS-SECTIONS MEASUREMENTS FOR ELEMENTS $56{\leq}Z{\leq}66$ IN THE ENERGY RANGE 11-41 keV. Journal de Physique Colloques, 1987, 48 (C9), pp.C8-669-C8-672. 10.1051/jphyscol:19879116 . jpa-00227224

HAL Id: jpa-00227224 https://hal.science/jpa-00227224

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

L X-RAY FLUORESCENCE CROSS-SECTIONS MEASUREMENTS FOR ELEMENTS $56{\leqslant}z{\leqslant}66$ in the energy range 11-41 keV

S. SINGH, S. KUMAR^{*}, D. MEHTA, M.L. GARG, N. SINGH, P.C. MANGAL^{*} and P.N. TREHAN

Department of Physics, Panjab University, Chandigarh 160014, India * Department of Biophysics, Panjab University, Chandigarh 160014, India

<u>Abstract</u>:- The L X-ray fluorescence cross-sections ($\sigma_{L_{\alpha}}^{r}$, $\sigma_{L_{\beta}}^{r}$ and $\sigma_{L_{\gamma}}^{r}$) have been measured for ten elements (56xZx66) at various photon energies in the range of 11-41 keV. A good agreement is found between the measured results and the theoretically calculated values of L XRF cross-sections using various physical parameters based on relativisitc theory.

<u>Introduction</u>:- Information on X-ray fluorescence (XRF) cross-sections is important because of its wide use in many areas of basic and applied science, notably in the fields of atomic, molecular and radiation physics and in the non-destructive elemental analysis of materials using XRF technique. A limited work has been done in the direction of measurement of L XRF cross-sections (Garg et al 1985, 1986, 1987, Kumar et al 1985, Singh et al 1987 a,b). It was observed that for the elements $(56 \leq 2 \leq 71)$, the experimental results of L XRF cross-sections are, in general, higher than the theoretical estimates. It was therefore, thought worthwhile to measure the L XRF cross-sections for more elements at different excitation energies in this atomic region so as to develop some statistical basis for looking deeply into the observed discrepancy, between the experimental and theoretical L XRF cross-sections. Keeping this in mind, L XRF cross-section of Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb and Dy have been measured as a function of incident photon energy between 11-41 keV.

<u>Experimental Method</u>:- The experimental arrangement for our annular source geometry both in 'direct' and 'secondary' excitation modes have been described elsewhere (Garg et al 1984). In this arrangement low energy photon sources of 241 Am (300 mCi) and 109 Cd (25 mCi) along with exciter system (NER-496) obtained from New England Nuclear USA have been used.

The spectra from various targets were recorded with Si(Li) detector (FWHM 170 eV at 5.9 keV), coupled to 4096 channel ND-100 analyser. Three sets of observations were taken for each target. A relative efficiency curve for Si(Li) detector in the energy range 4-80 keV was generated as described by Garg et al (1985). The error in the efficiency values in the energy region of interest (4-15 keV) are estimated to be less than 3%.

<u>Results and Discussions</u>:- The measured values of L XRF cross-sections($\sigma_{L_k}, \sigma_{L_k}, \sigma_{L_k}$ and σ_{L_k}) for elements with atomic number $56 \leq Z \leq 66$ at different incident photon energies (11-41 keV) are listed in table. The overall error in the measured values are estimated to be of the order of 6-10%. This error is attributed to

C9-669

the uncertainties in different parameters used to evaluate L XRF cross-sections using equation 1 of Singh et al (1987b).

The experimental values of L XRF cross-sections are compared with theoretical values calculated using the formulation of Close et al (1973) as described by Garg et al (1984). In the present calculations the values of L_i -subshell photoionisation cross-sections (σ_{L_i}) are taken from Scofield (1973), the fractional radiative rates (F_{ij}) are from Scofield (1974). Two sets of values of fluorescence yields (ω_i) and Coster Kronig transition probabilities (f_{ij}) are chosen. First are semi-emperical fitted values of Krause (1979) and second are the values taken from the tables of Chen et al (1981), based on relativisitic Dirac Hartee-Slater calculations. Chen et al (1981) have tabulated values of (ω_i) and (f_{ij}) for Ba, Nd and Eu only. The values for other elements were calculated using Cubic spline interpolation (Forsythe et al 1977). It is evident from table, that the experimental values of L XRF cross-sections are in general higher than the theoretical estimates, when ω_{i} and $f_{i\,i}$ given by Krause et al (1979) are used. The agreement between the experimental and theoretical results are found to be better when ω_{i} and f_{ii} are taken from the table's of Chen et al (1981). It may therefore be pointed out that the theoretical values of L XRF cross-sections should be calculated using ω_i and f_{ij} from Chen et al (1981). Also the experimental values of L XRF cross-sections, can be used with more confidence for any type of applications, where the values of L XRF cross-sections are required.

Table 1 : Comparison of experimental and theoretical L XRF cross-sections (barns/atom) for Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb and Dy at 11.4, 15.2, 17.8, 22.6, 25.8 and 41.0 keV excitation energies

Energy (keV)	σ _Ľ			σLa			 ۳ _۲ ۰		
	(a)	(b)	(c)	(a)	(b)	(c)	(a)	(b)	(c)
<u>Ba(56)</u>	-								
11.4 15.2 17.8 22.6 25.8	1097(94) 528(38) 291 (21) 168(10) 133(9)	1097 482 304 151 102	1256 555 352 175 119	833(100) 503(47) 297(22) 182(12) 129(8)	1058 503 332 176 123	1156 550 362 192 135	- 76(13) 42(8) 33(2) -	85 57 31	92 61 33
La(57)									
11.4 15.2 17.8 22.6 25.8	1411(93) 614(41) 387(25) 198(13) 132(9)	1260 556 351 174 118	1424 632 401 200 136	1215(111) 635(43) 391(28) 225(14) 150(10)	1207 575 379 201 141	1319 628 414 219 154	- 84(14) 62(12) 36(3) 31(4)	99 67 36 26	107 72 39 28
<u>Ce(58)</u>									
11.4 15.2 17.8 22.6 25.8	1469(96) 678(56) 396(25) 221(14) 155(11)	1442 639 404 201 136	1622 722 458 229 156	1297(94) 663(50) 419(27) 263(16) 171(11)	1369 654 431 229 161	1505 718 474 252 177	- 118(15) 78(7) 55(4) 30(2)	111 75 41 29	121 81 44 31
<u>11.4</u> 15.2 17.8 22.6 25.8	1660(107) 820(52) 497(32) 260(16) 181(12)	1636 726 460 229 155	1834 818 520 260 177	1555(106) 793(55) 492(33) 294(18) 187(13)	1543 738 488 259 182	1709 817 540 287 202	- 134(24) 82(10) 49(3) 41(7)	125 84 46 33	137 93 51 36

C3-0/1

2065(134) 930(58) 569(36) 297(18) 211(13)	1861 829 526 263 178	2076 928 590 296 201	1724(121) 856(54) 520(33) 331(20) 213(15)	1732 873 549 292 205	1933 926 613 326 229	- 121(11) 80(10) 69(5) 31(3)	141 95 52 37	156 105 58 41
2351(161) 1125(71) 699(44) 374(23) 242(15)	2343 1047 666 334 227	2618 1174 749 378 257	2344(154) 1227(79) 796(51) 429(27) 295(21)	2192 1052 697 372 262	2458 1179 782 417 294	- 137(15) 95(11) 64(4) 52(6)	179 121 66 47	199 134 74 53
2822(179) 1323(83) 848(54) 443(27) 284(18) 77(5)	2642 1180 752 378 257 66	2939 1318 842 425 290 75	2321(156) 1236(79) 841(54) 460(28) 307(21) 82(5)	2488 1194 792 423 298 86	2781 1336 886 474 333 97	_ 194(20) 103(14) 71(5) 46(4) 17(2)	201 136 75 53 16	223 151 83 59 18
3177(201) 1538(97) 953(60) 511(32) 327(20) 87(6)	2945 1319 842 423 288 75	3280 1476 943 477 325 85	2814(178) 1433(90) 935(58) 537(33) 353(23) 99(6)	2749 1324 880 471 332 98	3074 1482 986 527 372 110	340(39) 210(18) 135(10) 94(6) 56(4) 18(2)	455 227 154 85 61 19	507 253 171 94 67 21
3536(225) 1646(108) 952(59) 543(34) 354(22) 99(6)	3301 1484 947 478 325 84	3601 1645 1053 533 364 95	3026(194) 1538(97) 945(59) 584(36) 406(25) 115(7)	3052 1478 983 527 372 108	3161 1653 1100 590 416 121	511(49) 221(16) 162(11) 91(6) 65(8) 25(2)	500 251 170 94 67 21	513 279 189 104 74 23
3651(230) 1752(109) 1140(71) 610(38) 384(24) 104(7)	3697 1668 1067 539 367 95	4044 1833 1175 596 407 107	3353(211) 1689(106) 1156(72) 655(40) 439(27) 127(8)	3420 1667 1111 597 421 123	3788 1848 1231 661 467 136	457(39) 263(23) 151(11) 95(6) 72(5) 20(2)	561 283 192 106 76 23	618 312 212 117 83 25
	2065(134) 930(58) 569(36) 297(18) 211(13) 2351(161) 1125(71) 699(44) 374(23) 242(15) 2822(179) 1323(83) 848(54) 443(27) 284(18) 77(5) 3177(201) 1538(97) 953(60) 511(32) 327(20) 87(6) 3536(225) 1646(108) 952(59) 543(34) 354(22) 99(6) 3651(230) 1752(109) 1140(71) 610(38) 384(24) 104(7)	2065(134) 1861 930(58) 829 569(36) 526 297(18) 263 211(13) 178 2351(161) 2343 1125(71) 1047 699(44) 666 374(23) 334 242(15) 227 2822(179) 2642 1323(83) 1180 848(54) 752 443(27) 378 284(18) 257 77(5) 66 3177(201) 2945 1538(97) 1319 953(60) 842 511(32) 423 327(20) 288 87(6) 75 3536(225) 3301 1646(108) 1484 952(59) 947 543(34) 478 354(22) 325 99(6) 84 3651(230) 3697 1752(109) 1668 140(71) 1067 <tr< td=""><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td></tr<>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

- These measurements were not done due to poor statistics of the data under $L_{\pmb{\gamma}}$ group of X-ray peaks.

a Present measured experimental values of L XRF cross-sections.

b Values calculated using ω_i and f_{ij} taken from Krause et al (1979).

c Values calculated using ω_i and f_{ij} taken from Chen et al (1981).

References

Chen M H, Crasemann B and Mark H, 1981 Phys. Rev. A24, 177.

Close D A, Bearse R C, Malanify J J and Umbarger J J 1973 Phys. Rev. A8, 1873.

Garg M L, Singh J, Verma H R, Singh N, Mangal P C and Trehan P N, 1984 J. Phys. B: At. Mol. Phys. 17, 577.

- Garg M L, Kumar S, Mehta D, Verma H R, Mangal P C and Trehan P N, 1985 J. Phys. B: At. Mol. Phys. 18, 4529.
- Garg M L, Mehta D, Verma H R, Singh N, Mangal P C and Trehan P N, 1986 J. Phys. B: At. Mol. Phys. 19, 1615.
- Forsythe G E, Malcolm M A and Molar C B, 1977, Computer methods for Mathematical computations.

Krause M 0, 1979, J. Phys. Chem. Ref. Data 8, 307.

Kumar S, Allawadhi K L and Sood B S, 1985, Phys. Rev. A31, 2918.

- Singh S, Garg M L, Mehta D, Verma H R, Singh N, Mangal P C and Trehan P N, 1987a, J. Phys. B: At. Mol. Phys. 20, 941.
- Singh S, Mehta D, Garg M L, Kumar S, Singh N, Mangal P C and Trehan P N, 1987b, J. Phys. B: At. Mol. Phys. (in press).