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Abstract. A theory of anelasticity is presented, which involves the relaxation of all the -- 
elastic compliances as a function of orientation. It is shown that. in addition to the usual 
relaxations of Young's and shear moduli. anelastic phenomena related to the relaxation of 
Poisson's ratio should be considered. Finally, the theory is applied to anelastic data in 
Zircaloy-4 and AISI-1080 steel. obtained in longitudinal excitations. 

Introduction 

The anelastic behaviour of meterlals IS usually described by the standard anelastic solid 
(SAS) model ( 1). The anelastic properties of such a solid can be expressed by the linear 
dtfferential equation 

where is the applied stress. e the strain. JU and JR are the unrelaxed and tM,e relaxed 
compliances: respectively. and T, is the relaxation time at constant stress. The dot 
indicates a derivative with respect to the time. The dynamic response of the SAS is very well 
known and leads to the so called Debye equations for the dynamic modulus and the internal 
friction ( 1 ) .  These equations are generally used to represent the anelastic behaviour of 
specimens excited under simple situations. like longitudinally or in torsion. In these 
situatrons. only the relaxat~on of Young's and shear modul~ are measured. Furthermore. for 
single crystals only the orientation dependence of the relaxation of these two moduli are 
generally obtained. 
It is the purpose of this paper to extend the formalism to all the elastic compilances. as a 
function of orientation, both for cubic and hexagonal symmetries. This will allow the 
determination of the relaxed and unrelaxed Poisson's ratios. in two orthogonal directions 
located in the plane perpendicular to the direction of the applied stress. With this 
information. it is possible ta study the relaxation behaviour in directions perpendicular to 
the excitation. Finally. some points defect symmetries and particular orientations will be 
considered. as special situations of the general formalism presented in the paper. 
Furthermore. the results will be applied to actual experimental data obtained in Zircaloy-4 
and AISI-1080 steel. 

Theory 

Generalized Hooke's law can be expressed, In terms of the commonly used slngle index 
notatton. as (2) 

6 

E.= E S. . a , .  i,j=l, ..., 6 
1 j=llJ 13 

( 2 )  
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where sj, are the elastic compliances. Eq. (2)  can be simplified for crystals if, instead of 
the usual components of stress and strain. six independent irnear combinations of these are 
chosen which possess certain fundamental symmetry properties associated wrth the crystal 
considered (3). These combinations are called symmetry coord~nates of stress and strain or 
symmetrized stress and strain. Furthermore. whenever a symmetrized stress is decoupled 
from all the symmetrized strains. except the one which corresponds to ~ t .  Hooke's law 
reverts to the simple form 

where y denotes the symmetry designation and Sy is the appropriate symmetrized 
compliance. In order to generalize the equations of eiastrcrty of crystals to allow for time- 
dependent effects. the validity of the SAS model will be accepted. for each symmetrized 
coordinate decoupled one from another. in this case. a generalization of Eq. ( 1 )  is 
obtained 

where R and U denote relaxed and unrelaxed compiiances. respectiveiy. Furthermore. 
there are two types of symmetrized strains. Type I and Type ii. The special feature of 
strains of Type I Is that a crystal subjected to such a strain is not lowered in symmetry by 
the deformatlon. On the other hand. a crystal under Type II strain is lowered in symmetry. 
it will be assumed in the theoretical development that follows that defects of only one single 
species are present. and only compiiances of Type iI may under go relaxation (1 ) .  

Cubic symmetry. Longitudinal stress 

For cubic symmetry and an extension along <loo> and a contraction along <010> or <001>. 
under a sinusoidal applied stress. Eq. (4) leads to (4)  

where 6 repr;esents the intensity and T the time. at ,constant stress. for the relaxation of 
( s l l - s l 2 )  .q=uol  exp(iwt), is the appiied stress. 6 1 gives the strain in the direction of 
the applied stress and E 2 the strain in the perpendicular directions. It should be pointed 
out that more complicate expresslons are obtained if the stress is applied in any direction. 
since the orientation factors appropriate for the cubic symmetry will be involved. 
Moreover, the complex Poisson's ratio is given by 

# ,  

v12=~1-iv2=-6~/€, ( 7 )  
with 

6 2 2 2  2 2 2 2 2  
v 1 =[-S11S12+( S12+ 5)(Sl1- T 6 )w T 1/Csl1+(S1f 5 6) w T 3 ( 8 )  

and 

v2=Iw~6(S 
2 2 2 2 2  

11+2s12 )I/  1 sll+( sll- 5 6 ) 0 7 1 ( 9 )  

It is easy to see that vp has a maximum at w ~ l .  as for a Debye curve and v l  has an 
inflection point at or-( 1/31 'I2. slightly displaced with respect to the classical value for 
Young's and shear moduli, as shown in Fig. 1. Furthermore, the internal friction due to 
each strain mode Is given by (4)  

i 1 ( 10) : t a n @ 2 = ~ ~ 1 2 / 4 ~ 1 2 = ~ 1 2 / s \ 2  ( 1  1) tan@l=AE11/4Ell=s, 151 1 

where the superscripts r and i indicate the real and the imaginary component. respectively. 
01 is the phase lag between the longitudinal stress and the longitudinal strain and 
between the stress and the transversal strain. The phase lags are given by 



The phase lag between longitudinal and transversal strain is 

Eq. (34) is shown in Fig. 1 and some characteristic points are given in Table 1 

Fig. 1. Complex Poisson's ratio and 
tan (@2-el) versus Inw~. Some 
characteristic values indicated from 
1 to 6 are given in Table 1. 

0 Ln 6 I t  

Table 1 
Characteristic values for the points indicated from 1 to 6 in Fig. 1. 

Pos i t ion  
1 

value 
2 

511/31'2( sll- 5 6 ) 

Hexagonal symmetry. Longitudinal stress 

If the angle e formed between the direction of the applied sinusoidal stress and the <c>- 
axis of the hexagonal crystal is w/2, that is. if the excitation is perpendicular to this axis. 
the strains produced are (4) 

2 6  2 2 2 .  6 2  e . = ~ ( s ~ ~ c o s ~ W s  s in2v)+(s  cos2Ws s i n  %cos O)w 7 + I w ~ p o s  *I/ 
1 13 12 1 3  

2 2  (I+W T ) ( 1 6 )  

where 6 j  is the strain in the dlrectlon of the applied stress and 4 In a perpendicular 
direction. 6 represents the intensity and T the tlme. at constant stress, for the relaxation 
Of ts11-s12). V indicates the direction in the plane whose normal is in the direction of the 
applied stress. 0 and v are the two Eulerian angles that define the orientation of the 
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excitation with respect to the coordinate system referred to the hexagonal cell (5 .6 ) .  For 
4-0 the complex Poisson's ratio is given by 

11 

it is easy to show from Eq. (17) that 

1 1 6 6 
v o ( w-0 )=-s12/s11 and vo( W T ~ D ) = - (  s12+z )/( sl12 ) 

in addition. the curve Of vh versus UT has an inflection point at 

w ~ = c s ~ , / (  s 2 )l/al/' 
11 2 ( 1 9 )  

For w=r=n/2 the complex Poisson's ratio is given by: 

Eq. (20) leads to 
1 1 6 

v,/,( w-0 )=-s13/s11 and vnI2( OT-)=-S,,/( slll ) 

The inflection point is given by Eq. (19) also in this case. v1 and v2 lead to curves similar to 
those shown in Fig. 1 and. in addition, v), decreases and v;lp increases as or Increases. 

Applications 

Measurements of v. as a function of temperature. were performed by using the "free-free" 
or floating beam resonant method. 'The equipment and the measuring technique have been 
described elsewhere (7). v is obtained from the measured resonant frequencies, at two 
different harmonics j and jo. through the relationship 

where L is the length of the cylindrical specimen. r i  and ro are the inner and outer diameter 
(ri=o for a cylindrical rod), respectively. and f, is the resonant frequency where j=l, 3. 5. 

gives the order of the harmonic for a specimen suspended in the center. The 
fundamental resonant frequency used was of the order of 1 7  kHz. Fig. 2 shows data 
obtained in a tubular specimen of Zircaloy-4 (hexagonal symmetry). The pair of harmonics 
used to calculate v with Eq. (22) are indicated on each curve. 

Curve 1-3 shows the typical behaviour expected for v;12 (Eq. (21)) and curve 3-5 the 
general trend expected vb (Eq. (18)) .  The different behaviour at different harmonics can 
be explained by the texture present in the tube, leading to Coupling between longitudinal 
and transversal vibrations, which depends on the frequency ( 8 ) .  

Flg. 3 shows data obtained in a cyciindrical specimen of AISI-1080 steel (cubic symmetry). 
The pair of harmonics used to calculate v with Eq. (22) is indicated on each curve. For the 
classrcal texture obtalned in a rod of materlal wlth cubic symmetry. like the specimen used. 
the tenslle stress IS applied mainly along (1 10, and the contraction occurs in a ( 1  10) 
plane. In these conditions and for a tetragonal defect. lt can be shown (9) that v l  has a 
behavlour similar to the one shown In Flg. 1. but increases with UT. This is the general 
trend observed in Fig. 3. The decrease observed In all the curves, above about 500 K. is 
due to a desordering transition 6 9) . 



Fig. 2. Poisson's ratio as a Fig. 3. Poisson's ratio as a functlon 
function of the reciprocal of the of temperature for a rod of AISI-1080 
absolute temperature for a Zircaloy-4 steel. 
tube. 

Conclusion 

A theory of anelasticlty produced by the relaxation of Poisson's ratio has been presented. 
which takes into account ?he loss produced by other strains. in addition to the one In the 
direction of the applied stress. Due to the higher elastic anisotropy of v in single crystals. 
than both Young's and shear moduli. a similar behaviour should be expected for time 
dependent events. Therefore, a more substantial information can be obtained from 
measurements of the dynamical behaviour of v than from those of Young's or shear moduli. 
Finally, the concepts developed have been applied to actual experimental data obtained in 
Zircaloy-4 and AISI-1080 steel. 
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