PbO SPECTROSCOPY AND STUDIES OF THE INTERACTION OF SINGLET MOLECULAR OXYGEN WITH LEAD ATOMS BY LASER-INDUCED FLUORESCENCE AND BY HIGH-RESOLUTION FOURIER TRANSFORM SPECTROSCOPY

J. Bachar, R. Bacis, S. Churassy, F. Martin, S. Rosenwaks, G. Taïeb, J. Vergès

To cite this version:

HAL Id: jpa-00227096
https://hal.archives-ouvertes.fr/jpa-00227096
Submitted on 1 Jan 1987

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
PbO SPECTROSCOPY AND STUDIES OF THE INTERACTION OF SINGLET MOLECULAR OXYGEN WITH LEAD ATOMS BY LASER-INDUCED FLUORESCENCE AND BY HIGH-RESOLUTION FOURIER TRANSFORM SPECTROSCOPY

J. BACHAR, R. BACIS*, S. CHURASSY*, F. MARTIN*, S. ROSENWAKS, G. TAÏEB** and J. VERGES***

Ben Gurion University, Physics Department, PO Box 653, IL-Beer Sheva 84105, Israel
*Laboratoire de Spectrométrie Ionique et Moléculaire, (CNRS UA-171 et Greco Celphyra), Université Lyon-I, 43, Bd du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France
**Laboratoire de Photophysique Moléculaire, Université Paris-Sud, Bât. 213, F-91405 Orsay Cedex, France
***Laboratoire Aimé Cotton, CNRS II, Bât. 505, F-91405 Orsay Cedex, France

The \(^1\Delta_g\) state of \(O_2\) has an extremely large radiative lifetime (~1 hour) and is quenched with a very low efficiency by collisions with various types of wall. The success of pumping the iodine atom by \(O_2\) \(^1\Delta_g\) in the Chemical Oxygen-Iodine Laser has led to the examination of its action on various atoms (1), and in particular on lead, because the lowest excited state \(^3\Sigma_u^+\) is in quasi-resonance with \(O_2\) \(^1\Delta_g\) (fig. 1).

The mixing of molecular oxygen and lead atoms in their ground states \((O_2\ ^3\Sigma_u^+\) and \(Pb\ ^1\Sigma_g^+)\) does not produce a reaction. With \(O_2\ ^1\Delta_g\) a rather bright flame appears. The

![Figure 1](http://dx.doi.org/10.1051/jphyscol:1987791)

Figure 1 Energy levels of Pb, O₂ and PbO

![Figure 2](http://dx.doi.org/10.1051/jphyscol:1987791)

Figure 2 Experimental arrangement.
emission comes mainly from the lowest excited states of \(\text{Pb} \) and \(\text{PbO} \). The abundant formation of \(\text{PbO} \) is a competing reaction which tends to hinder the achievement of population inversion in \(\text{Pb} \) atoms: it is therefore desirable to eliminate the formation of \(\text{PbO} \), and hence we need to know and understand the reactions involved.

We have undertaken a high resolution spectroscopic study of the \(\text{O}_2 \left(^1 \Delta_g \right) \cdot \text{Pb} \) flame in order to obtain new spectroscopic data on the \(\text{PbO} \) molecule, and to determine the excited state populations in the steady state regime of the flame. A bright and stable flame was created with a Broida-type oven (fig. 2).

High resolution Fourier transform spectra were obtained using natural \(\text{Pb} \) (see fig. 3) and isotopically pure \(^{208} \text{Pb} \) (fig. 4). We have investigated in detail the \(\text{A} \, 0^+ \rightarrow \text{X} \, 0^+ \), \(\text{A} \, 1^+ \rightarrow \text{X} \, 0^+ \) and \(\text{B} \, 1^+ \rightarrow \text{X} \, 0^+ \) transitions of \(\text{PbO} \) produced in the reaction of \(\text{O}_2 \left(^1 \Delta_g \right) \) with \(\text{Pb} \).

\[\text{Figure 3} \quad \text{A} \, 0^+ \rightarrow \text{X} \, 0^+ \quad \text{band head of natural PbO. The intensities are in agreement with the natural abundances:} \quad ^{204} \text{Pb} \ 52.3\%, \quad ^{207} \text{Pb} \ 22.6\% \quad \text{and} \quad ^{206} \text{Pb} \ 23.6\%. \quad \text{Recorded in 2 hours.} \]

The traditional spectroscopic constants characterizing the \(\text{A} \) and \(\text{X} \) states have been precisely determined for \(^{208} \text{PbO} \) (Table 1). There were too many superpositions in the natural \(\text{PbO} \) spectra to obtain accurate data for the two other isotopes. Nevertheless, the classical Dunham isotope relations enable their line positions to be calculated from the \(^{208} \text{PbO} \) constants. We have found that the non blended lines in the natural \(\text{PbO} \) spectrum are indeed recalculated to within the experimental accuracy (error ~ 0.005 - 0.010 cm\(^{-1}\)).

\[\text{Table 1} \quad \text{Equilibrium constants (cm}^{-1}\text{) for the X 0^+ \text{ and A 0^+ states of} \quad ^{208} \text{PbO.} \]

The \(\omega_{X_A} \) parameter for the \(\text{A} \, 0^+ \) state is observed to be negative, explaining the variations amongst the values of \(\omega_{X_A} \) given by different authors (2).

<table>
<thead>
<tr>
<th>(X \text{-State})</th>
<th>(A \text{-State})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\omega_e)</td>
<td>(720.5980 (\pm) 36)</td>
</tr>
<tr>
<td>(\omega_e \cdot x)</td>
<td>(3.5161(11))</td>
</tr>
<tr>
<td>(r_e)</td>
<td>(1.9218) A</td>
</tr>
<tr>
<td>(B_e)</td>
<td>(0.3073121(42))</td>
</tr>
<tr>
<td>(\alpha_e)</td>
<td>(0.19084(75) \times 10^{-2})</td>
</tr>
</tbody>
</table>
The relative intensities of the rotational lines are well-determined in the 208PbC spectra. They show that the significantly populated vibrational levels of the A 0' state have a Boltzmann rotational distribution, corresponding to a temperature of 860 K (fig. 5). The comparison of the intensities between different bands show that the vibrational populations are in the ratio of the intensities: $\text{Int}(v=0) = 1.0$, $\text{Int}(v = 1) = 1.2$ and $\text{Int}(v = 2) = 0.7$. There is a small population inversion between $v=1$ and $v=0$ in the A state. The comparison of the bands' intensities, recorded at low resolution gave the same results. Simple multi-step processes possibly involved in the reaction cannot explain this inversion. Further investigations of the flame are now in progress.

Figure 4
Part of the non-apodised Fourier Transform record of the 208Pb-O$_2$ [A-X] flame at high resolution (0.04 cm$^{-1}$). Recorded in 2 hours.

Figure 5
Determination of the rotational temperature in the vibrational levels of the A state from the 208PbO spectrum.

References.