MEASUREMENT OF THE NUCLEAR gI FACTOR BY LASER OPTICAL PUMPING AND LARMOR PRECESSION IN A FAST ATOMIC BEAM

J. Vialle, M. Carre, J. Lerme, M. Pellarin

To cite this version:
J. Vialle, M. Carre, J. Lerme, M. Pellarin. MEASUREMENT OF THE NUCLEAR gI FACTOR BY LASER OPTICAL PUMPING AND LARMOR PRECESSION IN A FAST ATOMIC BEAM. Journal de Physique Colloques, 1987, 48 (C7), pp.C7-679-C7-681. <10.1051/jphyscol:19877165>. <jpa-00226988>

HAL Id: jpa-00226988
https://hal.archives-ouvertes.fr/jpa-00226988
Submitted on 1 Jan 1987

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
MEASUREMENT OF THE NUCLEAR g_n FACTOR BY LASER OPTICAL PUMPING AND LARMOR PRECESSION IN A FAST ATOMIC BEAM

J.L. VIALLE, M. CARRE, J. LERME and M. PELLARIN

Laboratoire de Spectrométrie Ionique et Moléculaire, (CNRS UA-171 et Celphyra), Université Claude Bernard Lyon-I, 43, Bd du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France

The extraction of the nuclear dipolar magnetic moment M_n from the hyperfine structure constants requires the calculation of the electronic contribution and this limits the accuracy which moreover depends on the hyperfine anomaly. To overcome these difficulties, we present an original method of determining the nuclear Landé factor g_n for diamagnetic atoms. This new technique is illustrated with two experiments using respectively the odd-A isotopes 135,137Ba ($I = \frac{3}{2}$ - test experiment /1/) and the odd-A isotopes 213,225Ra ($I = \frac{1}{2}$ - this experiment was carried out at C.E.R.N. on line with the ISOLDE mass separator). The method, based on the fast atomic beam laser spectroscopy technique, consists of detecting the in-flight Larmor precession of the nuclear magnetic moment in a static field, via the fluorescence induced by a resonant laser light.

The experiments are as follows (see Figure 1) : Ba^+ ions (Ra^+) accelerated to energies in the neighbourhood of 60 keV are converted into a quasi-monokinetic neutral beam in a charge-exchange cell. The atomic beam is overlapped by a collinear light beam from a single mode C.W. dye laser, resonant with the transition $^1S_0(F=3/2) \rightarrow ^1P_1(F'=1/2)$ ($^1S_0(F=1/2) \rightarrow ^1P_1(F'=1/2)$). The optical pumping produced by the Π-polarised (c^\star-polarized) light depletes the Zeeman sublevels $M_F = \pm \frac{1}{2}$ ($M_F = -1/2$), leading to a very weak fluorescence signal if the laser power is sufficient to induce several pumping cycles before the observation zone (see Figure 2).
A static magnetic field B_0 perpendicular to the quantization axis which determines the Π or σ^+ character of the light, is applied just before the observation zone. The in-flight precession of the aligned (oriented) nuclear magnetic moment \vec{M}_n around \vec{B}_0 repopulates the sublevels $M_F = \pm 1/2 \ (M_F = -1/2)$ periodically as a function of B_0 at the exit of the electromagnet, and the fluorescence signal appears as a fringed pattern from which the g_I-value can be deduced. More precisely the fluorescence signal takes the form:

$$S = A + B \cos(2\phi)$$

where $\phi = (g_I \mu_N B_0 / 2\hbar \nu) \int f(x) dx$. μ_N is the nuclear magneton, ν the atomic velocity, $B_0 f(x)$ the magnetic field at position x along the beam path, B_0 being the maximum field in the electromagnet where $f(x) = 1$. To avoid the very arduous determination of $f(x)$, we adopt a comparative method where the fringed pattern of a second atom or isotope, for which the g_I-value is known, is used to calibrate the magnetic field.

Typical recording of the fluorescence signal for the $^{225}{\text{Ra}}$ isotopes is displayed in Figure 3. $^{137}{\text{Ba}}$ and $^{139}{\text{Ba}}$ isotopes were used to calibrate the magnetic field during the Ra-experiment which is the first direct measurement of the nuclear magnetic moments of $^{213,223}{\text{Ra}}$. The results $\mu_I(213{\text{Ra}}) = 0.6133(18) \ \mu_N$ and $\mu_I(225{\text{Ra}}) = -0.7338(15) \ \mu_N$ provide an accurate test of ab-initio and semi-empirical calculations from optical hyperfine structures in Ra I and Ra II. This work, submitted to Physical Review Letters, was carried out in collaboration with: E. ARNOLD 1, W. BORCHERS 1, H.T. DUONG 2, P. JUNCAR 3, S. LIBERMAN 2, W. NEU 1, R. NEUGART 1, E.W. OTTEN 1, J. PINARD 2, G. ULM 4, K. WENDT 1 and the ISOLDE Collaboration, C.E.R.N. Geneva, Switzerland.
Figure 3: Fluorescence signal obtained with 225Ra as a function of the magnet current.

1) Institut für Physik, Universität Mainz, 6500 - Mainz, Fed. Rep. of Germany,
2) Laboratoire Aimé Cotton, 91405 Orsay Cedex, France,
3) Institut National de Métrologie du C.N.A.M., 75141 Paris Cedex 03, France,
4) C.E.R.N. 1211 - Geneva 23, Switzerland.

Reference