AN EXAMPLE OF ORGANIC SYNTHESIS INDUCED BY LASER IRRADIATION

F. Lemaire, R. Stringat

To cite this version:

F. Lemaire, R. Stringat. AN EXAMPLE OF ORGANIC SYNTHESIS INDUCED BY LASER IRRADIATION. Journal de Physique Colloques, 1987, 48 (C7), pp.C7-671-C7-671. <10.1051/jphyscol:19877162>. <jpa-00226985>

HAL Id: jpa-00226985
https://hal.archives-ouvertes.fr/jpa-00226985

Submitted on 1 Jan 1987

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
AN EXAMPLE OF ORGANIC SYNTHESIS INDUCED BY LASER IRRADIATION

F. LEMAIRE and R. STRINGAT

Laboratoire d’Optique Atomique et Moléculaire, Faculté des Sciences de Nice, Parc Valrose, F-06034 Nice Cedex, France

Apart from certain rare instances, the synthesis of cyclobutane derivatives must be performed photochemically. If, however, acrylonitrile is used as reagent (e.g. for the synthesis of nitrile function terpenes known for their "green notes"), a parasite polymerisation reaction that prevents the intermolecular reaction, is observed. Since the laser is both a powerful and a monochromatic light source, it is a tool of choice for the selective excitation of a chosen substrate molecule.

Laser irradiation of a carvone solution in acrylonitrile (5% v/v) at about 350nm (i.e. near the absorption maximum of the n-π* transition of the enone) induced a chemical reaction leading to the quasi-quantitative synthesis of cyclobutane derivatives:

\[
\text{Carvone} + \text{CHCN} \xrightarrow{h\nu \approx 350\text{nm}} \text{Dérivés cyclobutaniques}
\]

Two types of laser were used in this study: a Nd-YAG pulsed laser (λ = 355nm, F = 10 Hz, Energy per pulse = 45 mJ max.) and a C.W. Ar laser (λ = 351.1 nm, P = 100 mW).

The quantum yield of the transformation was very high. It was a constant 13% in the 10^-5-10^-1 MW/cm^2 light intensity range. It grew to 30% when the intensity was 6.4 MW/cm^2 and then diminished.