PHOTON GATED HOLE BURNING IN THE 7F0 → 5D2 ABSORPTION OF BaCIF : Sm2+

J. Vial, R. Macfarlane

To cite this version:

J. Vial, R. Macfarlane. PHOTON GATED HOLE BURNING IN THE 7F0 → 5D2 ABSORPTION OF BaCIF : Sm2+. Journal de Physique Colloques, 1987, 48 (C7), pp.C7-588-C7-588. <10.1051/jphyscol:19877142>. <jpa-00226963>

HAL Id: jpa-00226963
https://hal.archives-ouvertes.fr/jpa-00226963

Submitted on 1 Jan 1987

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
PHOTON GATED HOLE BURNING IN THE $^7F_0 \rightarrow ^5D_2$ ABSORPTION OF BaCIF : Sm$^{2+}$

J.C. VIAL and R.M. MACFARLANE

Laboratoire de Spectrométrie Physique (CNRS UA-08 et Celphyra), Université Scientifique et Médicale de Grenoble, BP 87, F-38402 Saint-Martin-d'Hères Cedex, France

*IBM Almaden Research Center, 650, Harry Road, San Jose, CA 95120-6099, U.S.A.

Spectral hole burning in solids is a selective bleaching of a small portion of an inhomogeneously broadened optical transition by a laser. In the photon gated holeburning process spectral holes are burned in two steps. The first is provided by a narrow band laser resonant with the inhomogeneously broadened transition and the second (gating) can be initiated by a broad band light source. Photon gated spectral hole burning was reported recently in $^7F_0 \rightarrow ^5D_0$ and $^7F_0 \rightarrow ^5D_1$ absorption lines of Sm$^{2+}$ in BaCIF (1). In this poster we report on the spectral holeburning behaviour of $^1F_0 \rightarrow ^5D_2$ transition. We found that even in absence of additional light source for gating, permanent holes can be burned. This self gating behaviour is consistent with the observation that the optimum frequency following 5D_0 excitation is $\approx 22 \, 000 \, \text{cm}^{-1}$ so that two photons of energy $^5D_2 - ^7F_0$ are sufficient to produce photoionisation. We have analysed the light intensity dependance of hole area and a simple model indicate that the electron transfer following the photoionisation is strongly dependant on the ion - electron trap distance.

We have used this persistent spectral hole burning to measure the stark effect for $^1F_0 \rightarrow ^5D_2(\Delta_1)$ and $^5D_2(\Delta)$ levels and find stark shifts very similar to those reported earlier for transition to 5D_0 and 5D_1 (2).
