MULTIPHOTON EXCITATION OF THE XENON NEAR THE 6s’ $|1/2|1$ RESONANT STATE AND THIRD-HARMONIC GENERATION

Y. Salamero, A. Birot, H. Brunet, J. Galy, P. Millet, J. Teyssier, J. Foulquier

To cite this version:
Y. Salamero, A. Birot, H. Brunet, J. Galy, P. Millet, et al.. MULTIPHOTON EXCITATION OF THE XENON NEAR THE 6s’ $|1/2|1$ RESONANT STATE AND THIRD-HARMONIC GENERATION. Journal de Physique Colloques, 1987, 48 (C7), pp.C7-565-C7-567. <10.1051/jphyscol:19877134>. <jpa-00226954>

HAL Id: jpa-00226954
https://hal.archives-ouvertes.fr/jpa-00226954

Submitted on 1 Jan 1987

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
MULTIPHOTON EXCITATION OF THE XENON NEAR THE 6s'1/21 RESONANT STATE AND THIRD-HARMONIC GENERATION

Y. SALAMERO, A. BIROT, H. BRUNET, J. GALY, P. MILLET, J.L. TEYSSIER and J.N. FOULQUIER

Décharges dans les Gaz, Centre de Physique Atomique, Université Paul Sabatier, UA-277, 118, Route de Narbonne, F-31062 Toulouse Cedex, France

The results obtained in a multiphotonic excitation of xenon near the 6s'1/21 state by a tunable pulsed dye laser are presented. At low pressure the 1P1 resonant state of xenon is created by 3-photon resonant absorption. When the pressure increases, the excitation spectra widen and shift towards shorter wavelengths. We explain this phenomenon by an excitation of the Xe2 molecules in the ground state 0g towards molecular excited state 1u(1P1) correlated to 1P1 state. A spectral analysis showed the presence in the luminescence of the first and second continuum of xenon. We demonstrated that the third-harmonic generation of the incident laser beam intervenes in the excitation process. This radiation was detected and his pressure dependance studied. The phase matching parameter Cx and the nonlinear susceptibility were measured.

Experimental Set-up:

It has been described in previous paper (1,2). The excitation is achieved by a tunable laser pulsed beam (50 Hz). The dye used in the present experiment is the B.B.Q. centered at 388 nm. The energy of the laser pulses can be adjusted between 10 and 80 µJ. The bandwidth of the beam is about 0.8 cm⁻¹ at 388 nm. This beam is focused in the gas by a 40 mm focal length lens. The luminescence is observed by an extremely solar blind P.M. set to detect single photon in a lateral direction to the incident laser beam. The third harmonic generation is detected in the frontal observation.

Lateral observation—Excitation and Emission Spectra:

At low pressure (pXe<1 torr) excitation spectra are very narrow and centered on the wavelength(λlr=388.7 nm) corresponding to the 3-photon resonant excited 1P1 state (figure 1). When the pressure increases the excitation spectra widen and shift towards shorter wavelengths. Some failures appear in the excitation spectra (filtered at 129 ; 145 and 168 nm) at several reproducible incident beam wave

Figure 1 - Excitation spectrum of Xenon luminescence at 128 nm.

Figure 2 - Excitation spectrum of Xenon luminescence at 168 nm.
lengths (figure 2). This is interpreted by a molecular excitation of the free or bound dimers in the ground state towards the excimers $1_u(1P_1)$ and/or $0_g(1P_1)$. As the third-harmonic generation (T.H.G.) is present, these levels can be excited either by 1-VUV photon or 3-laser photon. Our results are in agreement with Miller and Compton experiment (3) who simultaneously detected T.H.G. and induced ionisation by the incident laser beam. The failures in the excitation spectra can be attributed, as shown by Aron and Jonhson (4) at a 4-photon excitation process which increases the ionisation phenomenon. The fourth photon absorption intervenes probably between excited molecular states. Emission spectra shown only the first and second continuum of Xenon respectively centered at 150 and 170 nm. Their pressure dependance is identical to that obtained by a selective excitation near the 6s resonant state $3P_1(1)$ or by other excitation means (5).

The presence of the 145 nm emission for pressures so weak than 1 torr, whilst the initial excitation is nearly resonant with the 6s$^1 \left| 1/2 \right> \left| 1 \right>$ state, traduces that a very quick process leads to the creation of the 6s$^1 \left| 1/2 \right> \left| 1 \right>$ state. The 6p$^1 \left| 1/2 \right> \left| 1 \right>$ and 6s$^1 \left| 1/2 \right> \left| 1 \right>$ states are strongly coupled by two-body collisions. The radiative de-excitation of the first conduces to creation of the 6s states (6).

The temporal analysis of the 145 and 170 nm emissions shows the participation of the 6s$^1 \left| 1/2 \right> \left| 2 \right>$ metastable state to the creation of the molecular state responsible of the second continuum emission.

Third-harmonic generation : (T.H.G.).

When a laser beam is focused in a gas with a wavelength λ_1, the third-harmonic generation ($\lambda_3 = 1/3 \lambda_1$) in the range of the negative phase mismatch ($\Delta k < 0$) is possible. The power of this VUV radiation generated is, starting from the expression of Ward and New (7) of his electric field:

$$p(3 \omega) = \frac{1}{2} \varepsilon_0 C \int 2 \pi r |E(3 \omega)(x^2+y^2)^{1/2}|^2 dr$$

we can write:

$$p(3 \omega) = \frac{8.204.10^{-16}}{(3\omega)^4} \frac{\chi(3 \omega)}{\lambda} N^2.P^3_1.F(b \Delta k, b/L, f/L)$$

P_1 and $P(3\omega)$ are the incident and generated powers in W/cm2, b the confocal parameter, f the position of the focal point in the medium, L the length of the medium, N is in at/cm3, $\chi(3 \omega)$ in erg$^{-1}$ cm6 (u.e.s.).

In the present experiment Δk is negative in the blue side of the resonance line at 129.6 nm ($^1P_1 = ^1S_0$ transition). We have found by a calculation that the non-linear process is possible between 126.6 and 129.6 nm by application of the Sellmeir formula. We verified in the frontal direction the presence of this VUV tunable radiation. The VUV intensity is, like the luminescence, linear with the cube of the intensity.

![Figure 3 - T.H.G. intensity (129.10 nm) versus Xenon pressure.](image)

![Figure 4 - Theoretical and experimental variation of C_{xe} with VUV Wavelength.](image)
of the incident laser beam energy. His bandwidth is very narrow, less than 10^{-2} nm. The pressure dependence of the T.H.G. intensity, for a laser excitation wavelength, presents a maximum situated at the optimal pressure (figure 3). The experimental points are suited by the theoretical law given by the $p^{(3 \omega)}$ expression:

$$p^{(3 \omega)} \propto A B^2 p_{Xe}^4 \exp (B \cdot p_{Xe})$$

The full curve of this figure is in good agreement with experimental points. From the determination of the optimal pressure ($b \Delta k = -4$) we found the phase matching parameter $C_{Xe} = \Delta k / N$. The figure 4 represents theoretical variation and experimental results of C_{Xe} versus VUV wavelength radiation. The disagreement in the wavelength range under 129.8 nm is probably due to a reabsorption of the VUV radiation when the pressure increases and by the intervention of molecules in the ground state whose population augments linear with the square of the pressure. The experimental determination of $\chi^{(3 \omega)}$ has been possible by application of $p^{(3 \omega)}$ expression. In table 1, we report several values of $\chi^{(3 \omega)}$ for different wavelengths. Absolute error is about 100% but the variation with the wavelength is significant. The measurements of the third-order non-linear susceptibility of Xenon in this range are not frequent.

<table>
<thead>
<tr>
<th>λ_{laser} (nm)</th>
<th>$\lambda_{VUV} = \frac{\lambda_{laser}}{3}$</th>
<th>p_{Xe} (torr)</th>
<th>$\chi^{(3 \omega)}$ (cm6.erg$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>388.5</td>
<td>129.5</td>
<td>15</td>
<td>1.3×10^{-35}</td>
</tr>
<tr>
<td>388.35</td>
<td>129.45</td>
<td>28</td>
<td>1.0×10^{-35}</td>
</tr>
<tr>
<td>388.2</td>
<td>129.4</td>
<td>57</td>
<td>6.7×10^{-36}</td>
</tr>
<tr>
<td>387.9</td>
<td>129.3</td>
<td>95</td>
<td>4.9×10^{-36}</td>
</tr>
<tr>
<td>387.3</td>
<td>129.1</td>
<td>165</td>
<td>2.8×10^{-36}</td>
</tr>
<tr>
<td>387.0</td>
<td>129.0</td>
<td>200</td>
<td>2.0×10^{-36}</td>
</tr>
</tbody>
</table>

Table 1 - Different values of third non-linear susceptibility $\chi^{(3 \omega)}(- \omega, \omega, \omega)$ of Xenon versus T.H.G. wavelength.

BIBLIOGRAPHIE.