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Abstract: 

A classical description of pairing as vibrations and rotations 
in the number of particles as a function of the gauge angle is out- 
lined and applied to a calculation of the pair transfer by the pair 
field in a collision between two superfluid nuclei. 

I .  Surface Vibrations and Rotations 
The motivation for taking up the subject of a macroscopic de- 

scription of pairing is the success of the macroscopic or classical 
description of the excitation of surface vibrations in heavy ion col- 
lisions. I t  is well-known that one may talk about pairing in much 
the same way [I]. Fairing vibrations and pairing rotations are ex- 
cited in two-nucleon transfer reactions, and the question is, whether 
a similar classical description of these phenomena may also be use- 
ful. Most of what I am going, to say will be as well-known to many of 
you, who have been working In nuclear structure as i t  was to Ricardo 
Broglia who has contributed a great deal to the subject [ Z ] .  

I shall start out by a short summary of the macroscopic descrip- 
Lion of surface deformations, where we envisage that the nuclear den- 
sity 0 can perform vibrations around an equilibrium density 0") 

The quantity 0") can be parametrized as 

and surface vibrat~ons can be described by varying the nuclear radius 
R as function of direction 

The corresponding change in density is 

The deformation amplitudes a~~ are the dynamical variables describ- 
ing the collective modes. A deformation of the density gives rise to 
a change in the average field 
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by the amount 

to) ag + 
6U = Svl2 60 = R a~ EX,, sXM YX,,(r) ( 6 )  

For small distortions the density and the field perform selfcon- 
sistent harmonic oscillations described by the Hamiltonian 

1 l 2  + $ CX Is t 2  (7) 
X l t  

where 1s the momentum to conjugate to K J ~  

The amlltonian ( 7 )  leads to a harmonic spectrum of the collec- 
tive modes. The matrix elements of ah,, 

are, independent of p , the socalled zero point amplitudes. 
In some cases, as we know, even the equilibrium density is de- 

formed and the dynamical deformation parameters are then more appro- 
priately given by the intrinsic deformations a'~,, and the orienta- 
tion angles ei 

Mi,, = E,,. ( 9 )  

The Hamiltonian is then 

where the angular momentum components L are the variables conjugate 
to the orientation angles ei 

In a heavy ion collision an external field from the projectile, 
a , interacts with the surface of the target, A . The interaction 
energy may be written 

+ + +  + 3 -  
H int =Joa(r)V(r-r') pA(ra )d rd4r' 

The first term indicates the diagonal part of Hint 
(0) (0) - 

<O lHlnt lo> = fDa v12 *A - 'aA (12) 

which is the fo'lding potential for the ion-ion interaction. The se- 
cond term give rise to target excitations i.e. 

The third term similarly gives rise to excitations of the projectile 
while the last term describes the mrrtual excitation where the deform- 
ed field of the target excites the projectile and target at the same 
time. 

T I .  Non Local Densities 
The above derivations are not quite correct because we know that 

the antisvmmetrization implies that we should include the exchange 
interaction, i.e. 



where we defined the nonlocal density 

and the mean field 

while 

is the exchange field. 
For a local interaction 

we find that UA is local 
$ 3  3 

0 (r r Id r 
A 2 2  2  

and only depends on the local density r = r . On the other 
hand the exchange potential 

is essentiallly.non1ocal even for local interactions. 
The nonlocal density matrix Q(rlrl') also has a classical in- 

terpretation. It carries in fact information about the single par- 
ticle momentum distribution. This can be seen by performing a Wigner 
transformation 

where we introduced 

+ + + + -1, 
q = ( r  +r0)?4 and ? = r - r  

+ + 
The quantity P(p,q) is equivalent to the classical single par- 

ticle distribution in phase space, and the local density that we 
talked about in the previous section is given by the classical ex- 
pression 

+ + 
in terms of P(p,q) , 

Another quanta1 feature is the spin. In fact the full density 
matrix (15) should depend also on the spln coordinates. We shall in 
the following only consider the component 

+ + + + + + + + 
Q,,(r,rS) = 1 1 2  (a+(r') a+(r) + a-(r') a-(r)) (24) 

where the subindex indicates the value of a . 
The idea of mean field theories is to write the interaction in 

the form 
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When we make variations of the density we should therefore vary 
the nonlocal equilibrium density and we should include variations 
that imply components of the type of pr2 . In varying the nonlocal 
density and in taking pairing into account one should in principle 
also include terms proportional to the velocity of the amplitudes. 
We shall neglect such variations in the following. 

111 .  Pair Densities 
The quantities p 2  and P-2 in (25) are generalized single par- 

ticle densities defined by 

while the mean field associated with these quantities are the pair 
fields 

The latter equation holds.for a local two body interaction. 
A formal connection between the traditional densities and the 

pair densities is obtained by defining the pair moments 

and 
+ +  3 - 

M,, = /po(r,r) d r = N 

The latter being the total particle number operator. 
The three quantities (28) have properties in common with the 

spherical components of the total angular momentum. Defining 
Mt2 = Mx t iMy , Mo = Mz we find 

[Mx, M ] = i MZ , etc. (29) 
Y 

Like the total angular momentum they generate rotations among the 
components of P defined by 

+ + ,  P,Z(r,r) = P,t i 0 and 
Y 

Po = Pz 

as e.g. 

+ + , )  

The space in which the rotations take place is called quasispin- 
space. By rotating Po through a finite angle around the y-axis one 
obtains mixtures of Po and Ox and the result is equivalent to a 



Bogoliubov-Valatirb transformation. Rotations around the z-axis 
leaves the Hamiltonian invariant and the corresponding conserved 
quantity is Mo i.e. the total number of particles. This particular 
transformation is called a gauge transformation and the angle of ro- 
tation the gauge angle. 

The relations between Po and Pk2 emphasizes that Pk2 are 
single particle densities although the quantity 

is related to two particles. If the stite IA+2> of the nucleus 
with A+2 particles were described by a Tamm-Dancoff approximation 
it would in fact be the two particle wavefunction. In the random 
phase approximation (RPA) it is not. 

I t  is wellknown that the quantity <At2 1Mk2 IA> measures the 
strength of two particle transfer reactions on nucleus IA> . If, as 
often is the case, most of this cross section is cqncentrated on the 
ground states of the neighbouring nuclei IA+2> we may from the coni- 
mutation relation (32) ,conclude that 

e A 

<A+2 1 [P0,M21 IA> 
A (33) 

= <A+21M21A> C<A+Xlp,,(rr') lA+2> - <Alpo(rr') IA>) 

IV. Pairinq Vibrations 
The relation (33) gives the basis for describing a pairing vi- 

bration quite analogously to surface vibrations. We thus assume that 
in a pairing vibration there is a deformation in particle number 

where K = '2 , A(') berng the equrllbrlum partlcle number. We then 
find 

In order to estimate the derivative of the nonlocal density we 
may use the Thomas Fermi approximation for the density in phase 
space 

and the local density 

where kF = pF16 is the Fermi momentum. The derivative of 0 is 

Using the Wigner transformation this implies that the nonlocal pair 
density is 
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with q = (:+:')/2 . 
In comparing with (30) and noticing that 

we see that the amplitudes ak2 of the oscillation can be identified 
with the pair moment 

In Fig. 1 the result (39) is compared to the transition density 
connecting the ground state of 210~b with '08pb as calculated in the 
random phase approximation. In fact the expression (39) gives a 
rather accurate parametrization of the RPA result (cf.ref. 121). 

EXTENDED 
5 

r,.3fm 

0 

Fig. 1 .  Contour levels of the square of the two-particle transition 
density P2(rl,r2) in the x-z phase fixing r l  along the z-axis. 
The first, second and third columns correspond to the single, reduced 
and extended configurations space, respectively. The first, second 
and third row correspond to rl = 3, 5 and 7 fm, respectively. The 
contours indicate the values of the function in integral units start- 
ing from 1 x Harmonic oscillator wave functions were used. 

We can write down the Hamiltonian for the pairing vibrations in 
the harmonic approximation and find 

The last term is proportional to the angular momentum around the z -  
axis in the quasispin space, i,e. the particle number. The occur- 
rence of this term is associated with the ambiguity in the defini- 
tion of Fermi level, X . I t  is in fact equal to 2XN where N is 
the number of pairs, 

In a collision between two heavy ions the interaction energy 
will contain terms 

where the matrix elements are zero because of the overall particle 
conservation. The only non-vanishing term in fir,st order is 



which causes mutual excitat~on in which the pair field of the projec- 
tile or of the target excites both nuclei. 

With the parametrizat~on (39), Hint is readily evaluated to 
give 

where 

S 
( A )  sin kia)€, sin kF f, 

f ( R )  = d3f, -;;;---- 
is a function of the distance R between the two ions. The matrix 
elements of Hint lead to the particle conservation a = -a' and 
is proportional to the product of the deformation parameters. 

In the classical description where the ions move on classical 
trajectories, f(R) is a given function of time and the classical 
equations of motion with the Hamiltonian 

can be solved explicitly 

V. Pairinq Rotation 
In solving the general mean field equations that follow from 

(27) one usually finds that the ground state is deformed in ordinary 
space as well as in quasispin space. This violation of symmetry, 
i.e, of conservation of angular momentum as well as of particle num- 
ber is interpreted by assuming that the deformed mean field is the 
field in an intrinsic frame. In order to have a complete theory we 
must specify the frequency with which the field rotates around the 
three axes in space as well as around the z-axis in quasispin space. 
Such rotations give rise to additional Coriolis terms in the mean 
field equations and the frequencies of rotation can then be deter- 
mined selfconsistently by specifying the angular momentum and the 
particle number, which are the conjugate variables to the orientation 
angles. 

For the deformed pair density we may still use the estimate gi- 
ven above because the deformations are never very large. One should 
however use the deformation parameters referRed to the intrinsic 
frame, i.e, one should change to the variables a = ao+a' and @ '  
where a. is the equilibrium deformation, i.e. 

+I@ a = (aO + a') e- 
+2 

With these new variables the Hamiltonian becomes 

The number of pairs N times 5 is the conjugate variable to @ '  
while n is the conjugate momentum to the vibration amplitude a' 
around the deformed shape specified by an , The first two terms is 
the rotational part of the Hamiltonian, the last two describe the 
vibrations around aa . Neglecting these vibrations the deformed 
density is according to ( 3 5 )  
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In a collis~on between two pairlng deformed nuclei the particle 
conserving total Hamiltonian is according to (45) and (47) 

2 2 5 N* 
Hz----- 

h2~na2 
+ 2XANA + - -  + 2XaNk 

J~ Ja 

The classical equations of motion are 

and 

These equations lead to 

fi;; + fii = 0 i.e. NA + N; = constant 

If we can neglect the first term, we find 

where 6 is an integration constant indicating the relative orien- 
tation of the two nuclei at t = 0 . The equation for NA is then 

In the static limit where f ( R )  is constant this equation de- 
scribes the Josephson junction between two superconductors. The 
number of pairs in A oscillates with the frequency w=2(XA - ha)/%. 
For a heavy ion collision the number of transferred pairs is 

where in the last equation we assumed a trajectory symmetric in time. 
For an actual collision the Josephson oscillations only act to redu- 
ce ANA 

The number of transferred particles (56) depends on the relative 
orientation 6 at t=O such that i t  is maximum for 6 = n/2 and 0 
for 6 = 0 and n . For an isotropic initial distribution of the 
orientation angle one may calculate the distribution in the number of 
transferred pairs., I t  is indicated by a dashed curve in Fig. 2 as a 
function of f = AN/DNmax . 



Fig. 2. The probability for transfer of n pairs in a collision 
with nma, = 10, 

In the same figure is also indicated by circles the results of a 
quantal calculation (for ONma, = 10) of the same process, which was 
made more than 10 years ago by Klaus Dietrich and Hara [3] .  

The quantal calculations .show clear oscillations which were ten- 
tatively associated with the Josephson alternating current. The a- 
bove derivation show however that this can not be the case. The os- 
cillations can be understood however as a quanta1 interference effect 
of the same type as has been observed in the corresponding excitation 
of rotational states of shape-deformed nuclei. There are for any gi- 
ven value of AN < ANmax two values of the relative orientation 6 
that lead to this final result. In order to calculate the probabili- 
ty we must add the amplitudes, i.e. 

where S1 and S2 are the action integrals for the two initial 
conditions of 6 = 61 and 6 = 62 , respectively, that lead to the 
result AN . The result of using (57) is given by the full drawn 
curve in Fig. 2. 

VI. Conclusion 
In the present lecture I have tried to give a presentation of 

the broader understanding of pairing that one obtains through the 
classical macroscopic description. I also indicated some of the more 
practical results that may be obtained through this exercise. I t  
should be said however that unfortunately the two nucleon transfer 1s 
not at all well described by this theory. This is because the trans- 
fer of two nucleons is always dominated by the second order process 
where each nucleon is transferred to the target A by the normal 
mean field UA . Still, the correlation in space between the two 
nucleons give an enhancement of the successive transfer that is es- 
sentially proportional to the zero point amplitudes M . . Carlos 
Dasso, Pollarolo, Vitturi and others have recently tried to intro- 
duce effective two nucleon transfer potentials which retain some of 
the simplicity of the macroscopic theoryr47, 
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