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&sum6 - L'indice de rdfraction nl et lldpaisseur de la couche de transition 
(Q.L.L.) h la surface dlun cristal de glace h tdrature juste en-dessous du point 
de fusion (O°C) ont 6th mesurds h 116quilibre en utilisant une m6thode 
d'ellipscnn6trie in-situ. Les couches de transition ont dtd-observ6es h des 
tdratures sdrieures h -2 et -4OC pour les faces f 0001fet ~1010~ respectivement 
et n1 = 1,330 pour les deux faces. Cette valeur est tres proche de celle de l'eau en 
volume h 0°C. ~ssoci6 h des observations sur les formes des cristaux de glace prbs 
du point de fusion, on doit s1attendre h ce que 13 structure de llinterface entre la 
couche de transition et la glace sur la face {lolo! varie brutalement au-dessous de 
-Z°C pour devenir plus rugueuse. 

Abstract : The refractive index n l  and the thickness d of the transit ion layer 
(quas i - l iqu id  layer) on the surface of an ice crystal a t  temperatures just  below the 
me1 ting point (0°C) were measured in equilibrium, using an in-situ method of el lipso- 
metry. The transit ion layers were observed a t  temperatures above -2 and -4°C for  
(0001)- and {1010}-faces, respectively, and n was 1.330 fo r  both faces, which i s  
very close to  the refractive index of bulk wakr  a t  O°C (nw=1.333). Combined with 
the observational resul ts  about the ice crystal shapes near the melting point, 
i t  was expected that  the interface structure between transit ion layer and ice on the 
(1010)-face changes from smooth to  rough a t  -2°C. 

1. Introduction 

I t  i s  known that  the ice crystal surface i s  covered with a transit ion layer 
(so-called quasi-liquid layer, hereafter QLL) a t  temperatures jus t  below i t s  bulk 
melting point (0°C) in equilibrium. The surface structure l ike  th i s  i s  intimately 
related t o  the physical phenomena such as the mechanical adhesion[1,2], sintering[3], 
gas adsorption[4,5], d ie lec t r ic  constant[6], surface e lec t r ica l  conductivity[7,8], 
NMR[9], Vol ta effect[lO], photoemission[ll] and surface disorder[12]. A1 though 
these experimental resul ts  show the existence of the transit ion layer on the ice 
surface, conclusions d i f f e r  each other on the physical properties of the layer, i t s  
thickness and the temperature range for  which i t  i s  stable. Recently, Beaglehole 
and NasonC13l showed, by the measurements of the e l l i p t i c i t y  coefficient  fo r  the 
reflected l igh t  from the ice surface, tha t  the layer thickness depends on the surface 
orientations. We consider, however, tha t  there were some problems in the i r  measure- 
ments; f i r s t  they assumed that  the refractive index of the transit ion layer was 
equal1 to  tha t  of bulk water, and second the ice surfaces used were prepared dest- 
ructively. Consequently, we do not know yet whether the transit ion layer on the 
ice surface i s  "water-like" indeed and how thick i t  i s .  

On the other hand, several theoretical works about the transit ion layer have 
been pub1 ished. Fletcher[l4] indicated that  the water layer i s  energetically 
favored a t  temperatures above - ( 5  2 3)"C and i t s  thickness decreases with decreasing 
temperature. Kuroda and Lacmann[l5] showed that  the QCL on the ice surface i s  
thermodynamically stable above a c r i t i ca l  temperature and the habit change of snow 
crystals  can be explained by the anisotropy of the thickness of QLL.  
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The aim of t h i s  work i s  t o  measure directly the physical properties and the 
thickness of the transit ion layer on C0001)- and {10'iOI-faces of ice single crys ta l ,  
using an ellipsometry. As a resul t ,  the temperature dependence and the anisotropy 
of the layer thickness a re  c l a r i f i ed  and the surface structure of ice  crystal is 
discussed in connection w i t h  the habit change of ice crystals  observed jus t  below 
the melting point. 

2. Experimental 

2.1 El 1 ipsometry 
When the l inearly polarized l ight  i s  reflected a t  the surface covered with 

the t rans i t ion  layer l i ke  QLL (fig. I ) ,  i t  i s  changed t o  the e l l i p t i c a l l y  polarized 
l ight .  Then the complex relat ive amplitude attenuation p, which i s  a ra t io  of 
amplitude r e f l ec t iv i t i e s  ( R  and Rs) of p- and s-polarizations, i s  given by, 

P 
p = R / R  = tanY exp(iA) P s (1 1 

Where, tanY i s  related to  the re la t ive  amplitude change and A t o  the re la t ive  phase 
change. The value p i s  extremely sensit ive t o  the refractive index n l  and the 
thickness d of the layer[l6]. 

A null ellipsometry was operated fo r  the He-Ne laser  beam (X=633nm) i n  a 
walk-in cold room. To measure p of ice surface a t  maximum sensi t iv i ty  to  n and d, 
the angle of incidence (o was se t  t o  52.950". The sample was put in a chamher with 
two small holes t o  admit the laser  beam. The inside wall of the sample chamber 
was covered with a thin ice sheet which works a s  a vapor source. Temperatures of 
sample and vapor source were able t o  be controlled separately. 

2.2 Sample of i ce  surface 
The sample of ice surface used in t h i s  experiment was a s l i c e  of a negative 

crystal ( f ig .  2-a), which i s  a hole in a shape of a sharp hexagonal prism grown a t  
the end of a hypodermic needle inserted in an ice single crys ta l ,  by continuous 
evacuation of water vapor through the needle 17,181. The surface prepared in t h i s  
way has several characterist ics as follows; 11) the maximum diameter of surface i s  

Fig. 1 Schematic i l l u s t r a t ion  of the reflec- Fig. 2 Negative crys ta ls  of ice:  
t ion of polarized l ight  a t  the surface (a)  a negative crystal with a 
covered with a transit ion layer. hexagonal prism shape (below 
refrac t ive  indices of the t . r a n s i t i ~ ! i 5 1 % ~ r  -2°C); (b) a spherical nega- 
and ice,  d: thickness of the layer. The t ive  crystal with two small 
p-polarization i s  parallel t o  the plane basal facets (above -2°C). 
of incidence and the s-polarization per- Scale bars indicate 1 nun. 
pendicular to  the surface. 



3 t o  4 mm, (2 )  molecularly f l a t ,  (3) f ree  from misorientations (exact surface orien- 
tat ion of {00011 and {10TO1), and (4) f ree  from contaminations. Consequently, 
these surfaces are the best one in the purpose of the investigation of crystal 
surface. 

3. Experimental resul ts  

A ser ies  of experiments were carried out a t  various conditions. For a l l  
experiments, the surface temperature T was s e t  f i r s t  below -lO°C, and increased a t  
the constant ra te  of O.l0C/min o r  less?  

Figure 3 shows the typical change of observed (Y, A) a t  the condition close 
to  the equilibrium, which i s  plotted in a polar coordinate (Y,  A). The thin solid 
curves show simulated changes in p fo r  thickening a single layer of various refrac- 
t ive  indices. When the transit ion layer does not ex i s t  on the surface, (Y, A) i s  
plotted a t  the point S. Since the refractive index of bulk water i s  1.333 a t  O°C, 
a change in n l  appears mainly in I, whereas d appears in A? i f  the layer i s  water- 
like. The observed changes of (Y, A) f o r  (0001)- and (1010)-faces show tha t  the 
refractive index of the transit ion layer i s  around 1.330, which is quite close t o  
tha t  of water. I t  a lso  means that  the properties of the t rans i t ion  layer are  water- 
l ike  and the single layer model i s  acceptable fo r  the model of ice  surface structure. 

Figure 4 shows the change in A with respect t o  Ts f o r  both faces. 
Under the conclusion tha t  the refractive index of the transit ion layer is 1.330, 
the change of A can be read as the change of the layer thickness as shown in 
fig. 4. This resul ts  show that  the temperature Tw, a t  which the QLL appears on the 
ice surface, i s  -2°C and -4°C for {00011- and (10TO1-faces, respectively. Although 
the temperature dependence of d and the temperature Tw fo r  {1010)-faces f a i r l y  
scattered from sample t o  sample, systematic differences in d and Tw between both 
faces were confirmed by a ser ies  of experiments. 

nrn 

.o  

- basal f0001>-face 

---- prism ~ ~ ! ~ ) - f a c e  

Fig. 3 Observed changes of p= tany e x p ( i ~ )  in a polar coordinate (Y ,  A)  f o r  
(0001 )-face (sol id 1 ine) and (10?O}-face (broken 1 ine) with increasing tem- 
perature, and simulated changes of p fo r  thickening layer ( th in  solid curves) 
with various refractive indices n l  on ice. Crossed marks show the s tar t ing  
points of experiments. 
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Ts: TEMPERATURE ("C) 
0 -5 -10 -15 

d A l n t n B  

-basal  ( 0 0 0  ll-face 
--- prism (10TOl-face 

Fig. 4 Temeprature dependence of A and the th ickness change o f  the  t r a n s i t i o n  
l a y e r  under the  conclusion o f  nl=1.330. 

4. Discussion 

Kuroda and Lacmann[l5] t h e o r e t i c a l  l y  discussed the  temperature dependence 
and anisot ropy o f  the  th ickness o f  QLL as fo l lows.  

The existence o f  QLL on the  i c e  surface i s  disadvantageous due t o  the  bu lk  
f r e e  energy o f  t h e  l i q u i d  phase. However, i t  lowers t h e  surface f r e e  energy o f  
the system, so t h a t  i t  i s  t o  be poss ib le  t h a t  the  QLL s t a b l y  e x i s t s  on the  surface. 
For i c e  surface covered w i t h  QLL, they i n d i ~ a t e d  t h a t  the  w e t t a b i l i t y  parameter 
Aam becomes p lus value. That i s ,  

where oI, ow and aOI,W are the  sur face f r e e  energies per  u n i t  area (sur face tens ion)  

f o r  t h e - i n t e r f a c e  of vapor/ice, vapor/water and ice/water,  respect ive ly .  Consequ- 
en t l y ,  the  e q u i l i b r i u m  thickness o f  QLL de i s  determined by the  balance between 
the disadvantage o f  the  bu lk  f r e e  energy a4d the  f a l l  o f  t h e  surface f r e e  energy. 

where n and A are parameters connected t o  the  i n t e r a c t i o n  between water molecules, 
Vm t h e  molecular volume, Tm the me l t ing  temperature o f  i ce ,  AT the  supercool ing and 
Qm t h e  l a t e n t  heat o f  f u s i o n  per molecule. 

From the equation (2) and (3),  deq increases w i t h  increasing Aa . 
As t h e  sur face energy per  u n i t  area i s  p ropor t iona l  t o  the  number dens i t y  o? broken 
hydrogen bonds along the surface (broken bond model ), oI(OOO1 ) < aI (1010). 
Consequently, the f o l l o w i n g  r e l a t i o n  i s  expected, 



In the present experiment, i t  i s  c lar i f ied  tha t  Tw(OOO1) > ~ ~ ! 1 0 i 0 )  and the 
thickness increases with increasing temperature. These resul ts  quali tat ively 
coincide with the theoretical explanation by Kuroda and Lacmann[15]. 

The temperatures when the QLL appears on the ice surface are higher than 
those temperatures which have been obtained by other experiments. This reason 
i s  considered that  the surfaces used in the present experiment were molecularly f l a t  
and f ree  from misorientations and contaminations, compared with the rough and high 
index surfaces used in other experiments, Because aI for  the rough and high index 
surface i s  higher than a (0001) or a ( lo lo ) ,  surfaces l ike  t h i s  are more wettable 
than 100011- and (10i0)-~faces  (namefy, Tw(OOO1) > Tw(lO1O) > Tw(high index)). 

On the other hand, i t  has been c lar i f ied  that  the conspicuous habit change 
of ice crystal occurs a t  the temperature of -2°C ( f ig .  5) .  Kohata e t  a l .  [I81 
showed that  the shape of negative crystal (evaporation form) changes to the sphere 
which i s  truncated with only small {0001)-facets above -2°C-(fig. 2-b), compared 
with the hexagonal prism surrounded by both (0001)- and (1010)-facets below -2°C 
( f ig  2-a). Yamashita and Asano[19] showed that  the shape of snow crystal (growth 
form) also changes from the hexagonal plate to the c i rcular  disk above -2°C. These 
observational resul ts  mean tha t  the anisotropy of growth o r  evaporation rates with 
respect to a l l  surfaces with crystallographic orientations excepting (00011 dis- 
appears a t  temperatures above -2°C. The disappearance of anisotropy l ike  t h i s  may 
occur when the differences of surface structures are vanished by the occurence of 
surface roughening. 

The present experimental resul ts  showed that  the (10i0)-face i s  covered with 
QLL a t  temperatures above -4 "C. Consequently, we should consider that  the interfgce 
structure between QLL and ice  changes from smooth to  rough above -2°C fo r  the (1010) 
-face, though the interface on (0001)-face i s  kept smooth a t  whole temperature range 
(0 t o  -2°C). That i s ,  the surface roughening occurs for  the interface on the 
(1010)-face a t  t h i s  temperature. 

m. P. TEMPERATURE ("C) 
0 -1 -2 -3 -4 -5  

I i I 

Spherical negative : Hexagonal prismof 
with basal I negative crystal 

0 F 
I 
I 

ICE CRYSTAL 

SURFACE STRUCTURE 
0 F 

ICE CRYSTAL 

I 
Circular-disk I Hexagonal plate of 
snow Crystal 1 snow crystal 

I 
I 

? I 
I 

I I 
I ;3gzjI 1 I rn I C E  

Tr T w ( O 0 0 ~ 1  -.-.- 
I I"' ' 

I 
ICE 

T. 1 I oio) 

Type I : smooth interface. Type I 1  : rough interface 

Fig. 5 Schematic diagram to  show the relat ion between the microscopic surface 
structure and the ice  crystal morphology. Tr  i s  the temperature a t  which the 
surface roughening transit ion occurs. 
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5. Conclusions 
The conclusions obtained in t h i s  study a re  summarized a s  follows: 

1)  The ref rac t ive  index of the  t rans i t ion  layer i s  1.330 f o r  (0001)- and (10T0)- 
faces, which means the properties of the  t rans i t ion  layer a r e  very close t o  those 
of bulk water(nw=l .333) ; t ha t  i s  t o  say, the t rans i t ion  layer i s  QLL. 

2) Tw(OOO1) = -2°C and T,(IOTO) = -2%-4°C. The thickness of the t r ans i t i on  layer 
increases with increasing temperature and deq(OOO1) < deq(lO1O) a t  temperatures 
above -4°C. 

3)  These experimental r e su l t s  a re  qual i ta t ive ly  explained by the theory of Kuroda 
and Lacmann[l 51. 

4)  The habit  change observed f o r  t he  negative crystal  and the  snow crys ta l  indicates 
t h a t  the surface roughening occurs a t  the interface between QLL and i ce  crystal  
on the  (10i0)-face a t  the temperature of -2°C. 
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COMMENTS 

V.F.  PETRENKO 

When you c a l c u l a t e  t h e  t h i c k n e s s  o f  a  l i q u i d  l a y e r  you imply t h a t  i t  is a 
homogeneous one. But if it is not ,  does t h i s  change your r e s u l t s  ? 

Answer : 

We can a l s o  obtain the  simulated diagram o f  (q.6) f o r  the inhomogeneous o r  
m u l t i l a y e r s  model. But t h e i r  diagrams c o m p l e t e l y  d i f f e r  from t h a t  f o r  t h e  



homogeneous s i n g l e  l a y e r  model. Experimental  d a t a  obta ined i n  t h i s  experiment show 
t h e  b e s t  f i t t i n g  t o  t h e  d i a g r a m  f o r  t h e  homogeneous  s i n g l e  l a y e r  mode l .  
Consequently,  we should  cons ide r  t h a t  t h e  QLL is  t h e  homogeneous s i n g l e  l a y e r .  


