EXAFS AND NES STUDIES OF RARE EARTH AND TRANSITION METAL CATALYSTS

V. Paul-Boncour, A. Percheron-Guegan, J. Achard, J. Barrault, H. Dexpert, R. Karnatak

To cite this version:

HAL Id: jpa-00226181
https://hal.archives-ouvertes.fr/jpa-00226181
Submitted on 1 Jan 1986

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
EXAFS AND NES STUDIES OF RARE EARTH AND TRANSITION METAL CATALYSTS

ER 209, CNRS, 1, Place Aristide Briand, F-92195 Meudon
Principal Cedex, France

*ERA 371, F.S., 40, Avenue du Recteur Pineau, F-86022 Poitiers
Cedex, France

**LURE, Bâtiment 209C, Université Paris-Sud, F-91405 Orsay
Cedex, France

RESUME
Une série de composés intermétalliques RNix (R = La, Ce ; x = 2 ou 5) et CeNiAl aident que les hydres stables RNi2H4 et CeNiAlH3.3 ont été testés dans la réaction d'hydrogénation du monoxyde de carbone. Ces composés présentent une période d'activation qui a pu être reliée à la décomposition des composés initiaux en un système nickel sur oxyde de terre rare. Les conditions d'activation et l'activité catalytique dépendent fortement de la composition initiale et du taux de décomposition de l'intermétallique ou de l'hydure, alors que la sélectivité ne varie pas.

ABSTRACT
A series of RNiX (R = La, Ce and x = 2 or 5) and CeNiAl intermetallics and stable RNi2H4 and CeNiAlH3.3 hydrides have been tested in CO hydrogenation. The observed increase of activity with time on stream has been correlated to the decomposition of the compounds into nickel supported on rare-earth oxide. Catalytic activity and time and temperature conditions of activation are related to the initial composition and the transformation of the compounds, whereas selectivity is unchanged.

1 - INTRODUCTION

Recently a great number of catalytic studies has been undertaken on intermetallic compounds (1, 4). In this framework we have studied a series of RNiX (R = La, Ce and x = 2 or 5) and CeNiAl alloys in carbon monoxide hydrogenation. Moreover as RNi2 and CeNiAl form stable hydrides (V. PAUL-BONCOUR et al, submitted to J. Less Common Metals), these hydrides were also tested in catalytic reaction in order to observe the possible role played by the stored hydrogen.

However an increase of activity with time on stream was observed for both intermetallics and hydrides. Characterization of these compounds after catalytic reaction by X-ray diffraction (XRD) gave evidence of their partial decomposition into nickel metal as it was previously observed for RNi5 (R = La, Ce) intermetallics (1). In order to correlate the catalytic properties and this decomposition, each sample was characterized before and after reaction by XRD and X-ray absorption (XAS).

Experimental
The intermetallic compounds were prepared by induction melting of pure components under vacuum (5). Their homogeneity, stoichiometry and structure were checked by metallographic examination, electron micropoe analysis and X-ray powder diffraction.
Before use, all the alloys were powdered and sifted in a gloves box under purified argon. Catalytic tests were carried out in a dynamic fixed bed reactor described in (1) at atmospheric pressure with a CO:H$_2$ ratio of 1.

EXAFS spectra at Ni K-edge and XANES spectra at Ce L$_{III}$ edge have been collected at LURE using the synchrotron radiation provided by D3C1 ring. Ce M$_{IV}$ absorption spectra were recorded by photoelectron yield on ACO.

2 - RESULTS AND DISCUSSION

Catalytic properties

All the compounds exhibit an increase of activity during time on stream, as it is presented on figure 1 for CeNi$_2$ and CeNiAl alloys and their hydrides. Different time and temperature conditions are required to activate the compounds as presented on table 1. All the compounds show the same activation energy ($E_A = 25$ kcal/mole) and the same variation of selectivity as a function of CO conversion. This means that no electronic factors are involved in the catalytic properties of the various compounds and that the difference of activity, at a given temperature, is related to the number of active sites.

Characterization

The different phases determined by XRD after catalytic reaction are reported on table 1. Comparison of the EXAFS spectra at Ni K-edge of the compounds before and after reaction with FCC Nickel clearly show the transformation into nickel. Nevertheless in most case the signal is smaller than that of the standard Ni foil as it is observed in the Fourier transform (F.T.) of CeNiAlH$_3$ (figure 2). This difference as been interpreted as due to a mixing of nickel particles and undestroyed intermetallic or hydride compound (6). A careful analysis of the four main peaks observed in the F.T. has been used to estimate the percentage of nickel in the used compounds. Each peak has been filtered, back-Fourier transformed and fitted using experimental phase shifts and amplitudes of the standard Ni foil (figure 3). The mean free path and the edge energy were kept equal to the nickel one; Debye Waller factor varied from 0.02 to 0.04 Å; the calculated distances were those of FCC nickel. For each shell the ratio N$_j$/N$_j$(Ni) (N$_j$ = coordination number of the j^{th} shell) was calculated and the percentage of Ni metal was estimated from the mean ratio of the three last shells. As the precision on coordination numbers is quite low in EXAFS, this calculation cannot be used as an absolute value, but it is a good tool to compare the catalysts (table 1).

After catalytic reaction CeNi$_2$ and CeNi$_5$ exhibit the same Ce L$_{III}$ edge spectra than CeO$_2$ It's not the case of CeNiAl or its hydride as seen on figure 4. Spectra were fitted as described in (7). We found that they are a mixing of trivalent Ce oxide (white line with a 5 ev band-width) and CeO$_2$ (about 20%). This result was confirmed by the M$_{IV}$ - M$_V$ Ce edges, where the mixing of trivalent cerium and CeO$_2$ clearly appear (figure 5). No conclusion can be brought by La L$_{III}$ edge since no clear difference appears between intermetalics and lanthanum oxides.

Discussion

From the results summarized in table 1 a relation can be established between activation temperature and compounds transformation.

CeNi$_x$ compounds are active at 300°C and they are also the most decomposed into nickel and rare-earth oxide after only 30 hours of reaction. For LaNi$_x$ systems an higher activation temperature (350°C) is necessary. Moreover they are not fully transformed into nickel (EXAFS) and lanthanum oxide is not visible (XRD) except for LaNi$_2$ which is fully transformed into Ni and La$_2$O$_2$CO$_3$ (XRD) and is also the most active. In the case of CeNiAl compounds the thermal stability is increased up to 400°C by the presence of Al which lead to a trivalent cerium oxide.

These results show that rare earth oxidation play an important role in the catalysts activation. They confirm that catalytic activity is related to the percentage of free nickel particles which are the active sites in this reaction. Nevertheless no easy conclusion can be drawn for the effect of hydrogen absorption since the difference of activity between intermetalics and hydrides depends of their composition.
Fig. 1.- Catalytic activity as a function of time and temperature of CeNi$_2$, CeNiAl and their hydrides.

Fig. 2.- F.T. of CeNiAlH$_3$ before (a) and after (c) catalytic reaction compared to Nickel (c).

Fig. 3. - EXAFS spectrum of CeNi$_2$ after reaction:

- empirical
- simulation with four Ni shells

Fig. 5. - Cerium L_{III} edge spectra of CeNiAlH$_{3.3}$ and CeNiAl before (a and b) and after (c and d) catalytic reaction.

Fig. 6. - Cerium M_{IV-V} edge spectra of CeNiAlH$_{3.3}$ before (a and b) and after (c and d) catalytic reaction.
TABLE 1 - Catalytic properties and characterization results after reaction of RNi$_x$
($R = \text{La, Ce} ; x = 2 \text{ or } 5$) and CeNiAl intermetallics and hydrides.
(1) activation temperature ; (2) activity (mol CO h$^{-1}$ g$^{-1}$ Ni) at 350°C ;
(3) total time of reaction.

<table>
<thead>
<tr>
<th>Compound</th>
<th>$T(°C)$ (1)</th>
<th>A (2)</th>
<th>t (h) (3)</th>
<th>Phases (XRD)</th>
<th>% Ni (EXAFS)</th>
<th>Ce phases</th>
</tr>
</thead>
<tbody>
<tr>
<td>CeNi$_5$</td>
<td>300</td>
<td>82</td>
<td>27</td>
<td>Ni+CeO$_2$</td>
<td>80</td>
<td>CeO$_2$</td>
</tr>
<tr>
<td>CeNi$_2$</td>
<td>300</td>
<td>65</td>
<td>30</td>
<td>Ni+CeO$_2$</td>
<td>95</td>
<td>CeO$_2$</td>
</tr>
<tr>
<td>CeNi2H${4.4}$</td>
<td>300</td>
<td>65</td>
<td>30</td>
<td>Ni$_3$C+CeO$_2$</td>
<td>20</td>
<td>CeO$_2$</td>
</tr>
<tr>
<td>LaNi$_5$</td>
<td>350</td>
<td>38</td>
<td>40</td>
<td>LaNi$_5$+Ni</td>
<td>40</td>
<td>Ce$^{3+}$+20%CeO$_2$</td>
</tr>
<tr>
<td>LaNi$_2$</td>
<td>350</td>
<td>104</td>
<td>50</td>
<td>Ni+La$_2$O$_2$CO$_3$</td>
<td>75</td>
<td>Ce$^{3+}$+4%CeO$_2$</td>
</tr>
<tr>
<td>LaNi2H${4.3}$</td>
<td>340</td>
<td>18</td>
<td>53</td>
<td>Ni</td>
<td>75</td>
<td>Ce$^{3+}$+20%CeO$_2$</td>
</tr>
<tr>
<td>CeNiAl</td>
<td>400</td>
<td>18</td>
<td>50</td>
<td>Ni</td>
<td>75</td>
<td>Ce$^{3+}$+20%CeO$_2$</td>
</tr>
<tr>
<td>CeNiAlH$_{3.3}$</td>
<td>400</td>
<td>43</td>
<td>50</td>
<td>Ni</td>
<td>75</td>
<td>Ce$^{3+}$+20%CeO$_2$</td>
</tr>
</tbody>
</table>

TABLE 1 - Catalytic properties and characterization results after reaction of RNi$_x$
($R = \text{La, Ce} ; x = 2 \text{ or } 5$) and CeNiAl intermetallics and hydrides.
(1) activation temperature ; (2) activity (mol CO h$^{-1}$ g$^{-1}$ Ni) at 350°C ;
(3) total time of reaction.

References

1 - BARRAULT J., DUPREZ D., GUilleminot A., PERCHERON-GUEGAN A. and ACHARD J.C.,
3 - BARRAULT J., GUilleminot A., ACHARD J.C., PAUL-BONCOUR V., PERCHERON-GUEGAN A.,
4 - LE NORMAND E., GIRARD P., HILAIRE L., RAVET M.F., KRILL G. and MAIRE G.,
5 - LARTIGUE C., PERCHERON-GUEGAN A., ACHARD J.C. and TASSET F., J. Less Common
6 - PAUL-BONCOUR A., PERCHERON-GUEGAN A., ACHARD J.C., DEXPERT H., LAGARDE P. AND
7 - KRILL G., KAPPLER J.P., MEYER A., ABADLI L. and RAVET M.F., "Valence