THE SUCCESS OF THE DISTORTED WAVE METHOD AT VERY HIGH INCIDENT ENERGY

To cite this version:

HAL Id: jpa-00225787
https://hal.archives-ouvertes.fr/jpa-00225787
Submitted on 1 Jan 1986

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
THE SUCCESS OF THE DISTORTED WAVE METHOD AT VERY HIGH INCIDENT ENERGY

Service de Physique Nucléaire, Métrologie Fondamentale, CEN-Saclay, F-91191 Gif-sur-Yvette Cedex, France
*CERN, BP 20 CR, F-67037 Strasbourg, France
**GUNIL, BP 5027, F-14044 Caen, France

Résumé - Les réactions de transfert direct d'un proton et d'un neutron induites par un faisceau de 16O de 793 MeV bombardant une cible de 208Pb sont largement expliquées par deux règles de sélection contenues dans le formalisme de la Méthode des ondes distordues.

Abstract - The one-proton and one-neutron direct surface transfer reactions induced by 793 MeV 16O incident energy beam bombarding a 208Pb target nucleus, are widely explained by two selection rules contained in the Distorted Wave Method formalism.

One-nucleon transfer reaction induced by a 793 MeV 16O beam bombarding a 208Pb target has been studied at the GANIL facility using an energy-loss magnetic spectrometer in order to evidence two selection rules concerning single-particle state populations for various spins $j_f = l_f \pm 1/2$. The first selection rule tells us: as the incident energy increases, the strongly excited states are the ones having a large orbital angular momentum l_f (ref./1/). This is due to the increase of angular momentum mismatch between the entrance and exit grazing partial waves as the incident energy increases. Then large transfer angular momentum is needed in order to assure the proper balance between grazing wave angular momenta. The second selection rule says that starting, in the projectile, from an initial single particle state of spin $j_i = l_i \pm 1/2$ the favored final single-particle state has also a $j_f = l_f \pm 1/2$ spin, i.e. no intrinsic spin flip during the transfer process. In the present measurement of 208Pb(16O,15N)209Bi and 208Pb(16O,15O)209Pb reactions, the strongly excited final states will be $j_f = l_f - 1/2$ since the initial single particle state has a $l_{1/2}$ configuration in the 16O projectile. This selection rule is explained by the schematic diagram of Fig. 1: the fact that the transferred nucleon has, in addition to its initial intrinsic nucleon velocity, the velocity of the projectile, makes, it can be captured by the target only if the algebraic sum of these two speeds matches best the final intrinsic nucleon velocity in the residual nucleus. Calculations based on the one-step Distorted Wave Born Approximation (DWBA) has to contain naturally these two high incident energy selection rules.

The Fig. 2 shows the energy spectrum of the 208Pb(16O,15N) 209Bi one-proton transfer reaction. The energy resolution is 215 keV FWHM. As at low incident energy only the single particle states are populated. We can see, immediately from the second selection rule that the $2f5/2$ state is more strongly excited than the $2f7/2$ one of same orbital angular momentum $l_f = 3$. The $1h9/2$ level, and $l_f = 5$ state, is also
strongly populated. The $11/2$ state population is favored by the first selection rule since it involves a large $f = 6$ final orbital momentum but it is also inhibited by the second selection rule since it has a $J_f = f + 1/2$ final spin. For these two contradictory reasons, it has turned out that the $11/2$-state cross section is smaller than the ground-state one. Let us quote that the mismatch between the entrance and outgoing grazing waves is 8 M.

Angular distributions have been measured between 0° and 6° and a one-step DWBA analysis has been performed with the code PTOLEMY /3/. The form factor parameters were taken from ref. /2/. The optical model parameters were obtained by interpolation between a 1503 MeV 16O incident energy set /4/ and a 312 MeV set /2/. These parameters have the following values: $V = W = 50$ MeV, $r_0 = 1.105$ fm, $r_1 = 1.085$ fm and $a_0 = a_1 = 0.750$ fm. They correspond to a strong absorptive potential. This DWBA analysis reproduces quite well the relative intensities of all the single-particle state transitions as it can be judged from the spectroscopic factors listed in Table I.
In Fig. 3 are presented the energy spectra of 208Pb(16O,15O)209Pb one-neutron transfer reaction. Only single-particle states are populated. According to the second selection rule the $2g_{7/2}$ state is more strongly populated than the $2g_{9/2}$ ground state, both are $\lambda_f = 4$ transitions. The most strongly excited state is the $1i_{11/2}$ level which has an $\lambda_f = 6$ orbital momentum and is a $j_f = \lambda_f - 1/2$ state. The two selection rules favor this direct transfer reaction. The $1j_{15/2}$ state is strongly favored by the first selection rule, $\lambda_f = 7$ compared to a grazing wave angular momentum mismatch of 10K. But on the other hand population to this state is inhibited by the second selection rule: $j_f = \lambda_f + 1/2$.

The one-neutron spectroscopic factors of Table II are the results of the same DWBA analysis than the one performed for the one-proton transfer reaction. The agreement is quite reasonable and shows once more that the one-step DWBA calculation is able to reproduce fairly well the relative intensities governed by these two selection rules for high incident energy.

![Graph](image-url)

Fig. 3

From the absolute cross section estimate and the success of these two selection rules it can be inferred that the upper part of the transfer reaction energy domain has been reached and corresponds to twice the Fermi energy.

Table I

<table>
<thead>
<tr>
<th>State</th>
<th>E^* (MeV)</th>
<th>(16O,15N)</th>
<th>(16O,15N)</th>
<th>(3He,d)</th>
<th>Theorya</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1h_{9/2}^-$</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
</tr>
<tr>
<td>$2f_{5/2}^-$</td>
<td>0.896</td>
<td>0.81</td>
<td>0.89</td>
<td>0.63</td>
<td>0.85</td>
</tr>
<tr>
<td>$1i_{13/2}^+$</td>
<td>1.608</td>
<td>0.73</td>
<td>0.80</td>
<td>0.45</td>
<td>0.70</td>
</tr>
<tr>
<td>$2f_{5/2}^-$</td>
<td>2.822</td>
<td>0.72</td>
<td>0.77</td>
<td>0.71</td>
<td>0.66</td>
</tr>
</tbody>
</table>

a All spectroscopic factors are normalized on the g.s. theoretical value (see ref./5/).
Table II

One-neutron spectroscopic factors

<table>
<thead>
<tr>
<th>State</th>
<th>E^* (MeV)</th>
<th>$(^{16}O,^{15}O)$ 312 MeV</th>
<th>$(^{16}O,^{15}O)$ 793 MeV</th>
<th>(d,p) 20.0 MeV</th>
<th>Theory a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2g9/2$^+$</td>
<td>g.s.</td>
<td>0.89</td>
<td>0.89</td>
<td>0.89</td>
<td>0.89</td>
</tr>
<tr>
<td>1f11/2$^+$</td>
<td>0.779</td>
<td>0.88</td>
<td>0.53</td>
<td>0.92</td>
<td>0.96</td>
</tr>
<tr>
<td>1j15/2$^-$</td>
<td>1.423</td>
<td>0.88</td>
<td>0.54</td>
<td>0.62</td>
<td>0.62</td>
</tr>
<tr>
<td>2g7/2$^+$</td>
<td>2.491</td>
<td>1.39</td>
<td>0.67</td>
<td>1.13</td>
<td>0.84</td>
</tr>
</tbody>
</table>

a) All spectroscopic factors are normalized on the g.s. theoretical value see ref./5/.

REFERENCES

/4/ Barrette, J., this proceeding volume.