EVIDENCE OF PRIMARY EVENTS IN 20Ne, 22Ne FRAGMENTATION FROM COINCIDENCE MEASUREMENTS IN 20, 22Ne + 93Nb REACTION AT 30 MeV/A

To cite this version:

HAL Id: jpa-00225772
https://hal.archives-ouvertes.fr/jpa-00225772
Submitted on 1 Jan 1986

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
EVIDENCE OF PRIMARY EVENTS IN 20Ne, 22Ne FRAGMENTATION FROM
COINCIDENCE MEASUREMENTS IN 20,22Ne + 93Nb REACTION AT 30 MeV/A

A. CHBIHI, R. BILLEREY, B. CHAMBON, A. CHEVARIER, N. CHEVARIER,
B. CHEYNIS, D. DRAIN, C. PASTOR, M. STERN, A. DAUCHY*,
S. JOLY**, Y. PATIN**, Y. PRANAL**, L. SINOPOLI** and
J.L. UZUREAU**

Institut de Physique Nucléaire (et IN2P3), Université Claude
Bernard, Lyon-I, 43 Boulevard du 11 novembre 1918,
F-69622 Villeurbanne Cedex, France
*Institut des Sciences Nucléaires de Grenoble, (IN2P3-USTMG),
53, Avenue des Martyrs, F-38041 Grenoble, France
**C.E.A. Bruyères-le-Châtel, Service P2N, BP 12,
F-91680 Bruyères-le-Châtel, France

Résumé - La compétition entre différents processus primaire de réaction est mise
en évidence par l'étude des coïncidences particules légères-fragment du projectile
dans les réactions induites par les projectiles 20Ne et 22Ne sur 93Nb à 30 MeV/A.
La structure du projectile joue un rôle important dans la compétition entre les
mécanismes de pick-up, stripping et break-up.

Abstract - Evidence that primary ejectiles formation strongly depends on the pro-
jectile structure is given by comparison of 20Ne + 93Nb and 22Ne + 93Nb reactions
at 30 MeV/A. Pick-up, stripping, break-up mechanism are identified using
light particles-projectile fragments coïncidence measurements.

I - INTRODUCTION

Nuclear reaction involving excited states of the reaction fragments can generally be
subdivised into the primary process and the subsequent deexcitation through light particles
'emission or fission. The mechanisms of transfer and break-up in 22Ne induced reaction
have been studied for the system 20Ne + 197Au [1] and 22Ne + 27Al [2] at bombarding
energies up to 20 MeV/A respectively. Therefore in order to check the relative importance
of different dissociation phenomena, we studied the two reactions 20Ne + 93Nb
and 22Ne + 93Nb at 30 MeV/A.

II - EXPERIMENTAL

We performed on SARA coïncidence measurements between projectile like fragments and
light particles. Mass identification and energy measurements of fragments are performed
using two telescopes in the range 6 to 15 degrees. In fragment coïncidence measurements
the fragment telescopes were set at 8.5°. The light particle (p,d,t,α) are detected in a 5 to
35 degrees angular range using either a telescope (300 μm Si detected + BaF$_2$ scintillator)
or phoswich systems.

III - COINCIDENCE MEASUREMENTS ANALYSIS

When compared to 20Ne results the mean feature to underline on 22Ne fragmentation is
the large amount of 15N and 15B isotope production and the observation of sodium
isotopes. The coïncidences measurements on the two systems allow to understand most of
Let us first concentrate on 20Ne induced reaction. The deexcitation of the 20Ne* quasi projectile occurs preferentially through α emission by break-up mechanism or sequential decay. The signature of the two processes are given on figure 2. From their representation in the E_α-E_γ plane it can be recognized in figure 2a that for $^{16}\text{O}\alpha$ events roughly one half of the strength is concentrated in a sharp peak which is, within the experimental resolution, consistent with zero energy transfer to the target nucleus. The other events are spread out over 50 MeV excitation energy range. In figure 2b the correlation geometry allows to select events corresponding of deexcitations of 20Ne* through α emission. This deexcitation explains most of the 16O and 12C cross section observed. During the first step interaction between target and projectile a proton or [proton + neutron] transfer can occur. The so obtained 19F or 18F quasi projectile deexcite very easily by α emission such experimental decay leads to most of observed nitrogen and boron cross section. Similar analysis is performed concerning 22Ne interaction. The deexcitation of 22Ne* quasi projectile is not the dominant process. However 18Oα coincidence allows to put in evidence pure break-up mechanism. The competition with 21Ne* and 26Ne* primary events can be estimated from the ratio of coincidence yields between 16Oα/17Oα/18Oα or 12Cα/13Cα/14Cα they are in the ratio 3/1.8/1. Furthermore the most interesting feature is the formation of 23Na* through pick-up reaction ($Q = +2.75$ MeV). The signature for such process is given by the 19F-α coincidence. The sequential decay of 23Na* leads to extra amount of α-coincidence with fluor, nitrogen, boron isotopes. When looking at 15N exclusive energy spectra deduced from $\alpha-^{15}$N correlation, one can extract two components corresponding respectively to a mean value $E_1 = 400$ MeV which can be reproducted assuming an optimum Q value for pick-up process [3] and a constant fragment velocity during the following decay. The high energy component corresponds to a mean value $E_2 = 440$ MeV which can be calculated assuming an optimum Q value corresponding to stripping process (figure 3). Similar results are obtained from 11B-α-coincidence.

The formation of 23Na is also corroborated by fragments-fragments correlation which at (8.5-8.5) degree shows typical 11B 12C coincidence. The energy distribution of both fragments is very narrow and the sum energy $E(^{12}$C) + $E(^{11}$B) = 630 MeV is very close to the incident one (figure 4). The missing energy corresponds to the Q value for fragmentation. However such interesting feature corresponds to a very small yield (less than 10%) compared to 11B-α coincidence.

IV - CONCLUSION

The comparison of the two entrance channel 20Ne and 22Ne allows to put in evidence that the primary events are strongly dependent upon the projectile structure. These first reaction steps are determinant in the isotope yields of projectile fragments even taking in account the sequential decay.

REFERENCES

Figure 1 - The relative yield of proton (dashed area) and alpha (total area) coincidence plotted as function of ejectile mass in ^{22}Ne and ^{20}Ne induced reaction.

Figure 2 - Distribution of events in the $E_{H_1}-E_{\alpha}$ plane.
In figure 2a the solid lines mark the border consistent with zero energy transfer to the target ($Q = 0$).
In figure 2b the two dashed lines represent the mean value given by theoretical calculation for a statistical alpha emission from $^{20}\text{Ne}^*$.
Figure 3 - Energy spectra of the ^{15}N projectile-like fragment in coincidence with α particles. E_1 and E_2 are the mean energy values of the two observed components.

Figure 4 - Distribution of events in $E_{13} - E_{12}$ plane in case of $^{11}B + ^{12}C$ coincidence measurements in $^{22}Ne + ^{93}Nb$ reaction.