THE QUASI-CRYSTALLINE QUANTUM SPIN-$\frac{1}{2}$ XY-CHAIN

Th. M. Nieuwenhuizen

To cite this version:

Th. M. Nieuwenhuizen. THE QUASI-CRYSTALLINE QUANTUM SPIN-$\frac{1}{2}$ XY-CHAIN. Journal de Physique Colloques, 1986, 47 (C3), pp.C3-211-C3-216. <10.1051/jphyscol:1986322>. <jpa-00225733>

HAL Id: jpa-00225733
https://hal.archives-ouvertes.fr/jpa-00225733
Submitted on 1 Jan 1986

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
THE QUASI-CRYSTALLINE QUANTUM SPIN-½ XY-CHAIN

TH. M. NIEUWENHUIZEN*

Service de Physique Théorique, CEN-Saclay, F-91191 Gif-sur-Yvette Cedex, France

Résumé — On étudie une chaine de spins quantiques avec des couplages "quasicristallins" dans le plan XY et un champ magnétique uniforme le long de l'axe des Z. L'aimantation à température nulle est une fonction de Cantor du champ magnétique. La chaleur spécifique en champ nul se comporte comme T^Δ à basse température ; l'exposant Δ varie continûment entre zéro et un.

Abstract — The quantum spin-½ chain with "quasicrystalline" couplings in the XY-plane and a steady magnetic field in the Z-direction is studied. The zero-temperature magnetization is a Cantor-function. The zero-field specific heat behaves at T^Δ at low temperature with Δ varying continuously between zero and one.

INTRODUCTION

Recently several one-dimensional quasicrystalline systems have been studied. Luck and Petritis [1] considered a quasicrystalline phonon model, which is presented in shorter form in this issue [2]. Then Luck considered a quasicrystalline Ising model at zero temperature [3]. The present contribution summarizes a recent work done in collaboration with Luck [4].

We consider the Fibonacci tiling of the line, explained for instance in Ref. [2] (this issue). To long bonds we attach a coupling strength $J_1 = \rho$, and to short bonds a coupling $J_1 = 1$. Given this sequence $\{J_1\}$, we consider the quantum spin-½ XY Hamiltonian

$$H = 2 \sum_{i=0}^{N} J_1 \left(S_{i}^{x} S_{i+1}^{x} + S_{i}^{y} S_{i+1}^{y} \right) - \hbar \sum_{i=0}^{N} S_{i}^{z}$$

(1)

where \hbar represents a magnetic field in the Z-direction. The S_{i}^{α} are half the Pauli matrices. They obey:

$$[S_{i}^{x}, S_{j}^{\beta}] = i \delta_{ij} \varepsilon^{\alpha\beta\gamma} S_{i}^{\gamma} ; \sum_{\alpha} S_{i}^{\alpha} S_{i}^{\alpha} = \frac{3}{4}$$

(2)

*Present address: Institut für Theoretische Physik, RWTH Aachen, Templergraben 55, D-5100 Aachen, FRG
The reason why the model (1) can be solved is that it can be reduced to a free fermion problem. Lieb et al [5] showed this for the "pure" case \((J_i = J)\) and Smith [6] noted that it can be done as well in the case of arbitrary \(J_i\). The result is that the free energy has the form

\[
-\beta f = -\frac{1}{2} \beta n + \int_{-\infty}^{\infty} \ln \left(1+e^{\beta(E-h)} \right) dH(E)
\]

(3)

where \(H(E)\) is the integrated density of states

\[
H(E) = \lim_{N\to\infty} \frac{1}{N} \left(\# \ E_\alpha < E \right)
\]

(4)

of the tight-binding problem

\[
J_i u_{i-1} + J_{i+1} u_{i+1} = E_\alpha u_i \quad (u_{-1} = u_N = 0)
\]

(5)

Since \(H(E)\) will turn out to be a Cantor function, one cannot introduce a density of states \(\rho(E)\) by \(dH(E) = \rho(E) dE\) in Eq.(3). If \(E_\alpha\) is an eigenvalue of Eq.(5), so is \((-E_\alpha)\), as is seen by substituting \(u_i = (-1)^i v_i\). Hence \(H(E) = 1-H(-E)\); \(H(0) = \frac{1}{2}\) and we only have to consider positive energies.

The spectrum of Eq.(5) can be studied most conveniently by introducing \(Q_n = J_0 J_1 ... J_n u_n\). Its equation of motion can be written in the transfer matrix form

\[
\begin{pmatrix}
Q_{n+1} \\
Q_n
\end{pmatrix} =
\begin{pmatrix}
E & -J_n^2 \\
1 & 0
\end{pmatrix}
\begin{pmatrix}
Q_{n+1} \\
Q_n
\end{pmatrix} = T_n \begin{pmatrix}
Q_0 \\
Q_{-1}
\end{pmatrix}
\]

(6)

where \(T_n\) is a product of \((n+1)\) 2x2 matrices. See also Ref.[2] for a closely related situation. For the Fibonacci chain obtained by projection and discussed in [2], the \(T_{F_L}\) satisfy a specific recurrence relation. Their normalized traces \(x_L = \frac{1}{2} \text{tr} \ (T_{F_L})\) and determinants \(y_L = \det(T_{F_L})\) satisfy the recurrence relations derived by Kohmoto et al [7] and Luck [3]:

\[
x_L = 2x_{L-1}x_{L-2} - y_{L-2}x_{L-3}
\]

(7)

\[
y_L = y_{L-1}y_{L-2}
\]

we find \(y_0 = 1\), \(y_1 = \rho^2\) and hence \(y_L = \rho^{2F_{L-1}},\) where \(F_L\) are the Fibonacci numbers.

This leads us to define \(E_L = \rho^{-F_{L+1}}x_L\), which satisfies

\[
E_L = 2E_{L-1}E_{L-2} - E_{L-3}
\]

(8)
The boundary conditions are most easily expressed as

\[\xi_{-2} = \frac{1}{2} (\rho + \rho^{-1}), \quad \xi_{-1} = \frac{E}{2}, \quad \xi_0 = \frac{E}{2\rho} \]

(9)

The map (8) has a conserved quantity [7]

\[I = \xi_{L-2}^2 + \xi_{L-1}^2 + \xi_L^2 - 2\xi_{L-2}\xi_{L-1}\xi_L = \frac{1}{4} (\rho + \rho^{-1})^2 \]

(10)

Fig.1: Plot of the integrated density of states \(H(E) \) against energy \(E \), for \(\rho=2 \).

The Spectrum

In Fig.1 we present a plot of the integrated density of states \(H(E) \) for the value \(\rho=2 \). It is seen that \(H \) is a Cantor function. Its behavior near the maximal energy \(E_{\text{max}} \) is

\[1 - H(E_{\text{max}} - \xi) \sim \xi^\Delta P \left(\frac{\ln \xi}{\ln |\lambda_2|} \right) \]

(11)

where \(P \) is a periodic function with unit period. The exponent \(\Delta \) and the scale \(|\lambda_2| \) follow from an argument given in [1]: The map (8) has a six-cycle \(\alpha \to -\beta \to -\alpha \to \beta \to -\alpha \to -\beta \). The largest eigenvalue (in absolute value) is \(\lambda_2 \) with

\[\lambda_2 = -\left(\frac{1}{2} + \sqrt{\frac{S}{2} - \frac{3}{4}} \right) \]

(12)
A scaling argument then yields $\Delta = 2 \ln r / \ln |\lambda_2|$. The very same behavior is present near gap edges E_g inside the spectrum. In particular Δ does not depend on E_g; the periodic function P may do so, however.

At $E=0$ one finds that the initial conditions (9) already lie on a six-cycle $\frac{\mu}{2} \to 0 \to 0 \to -\frac{\mu}{2} \to 0 \to 0$ discussed by Kohmoto et al [7]. Hence one has a similar result

$$H(E) \sim E^\Delta P_0 \left(\frac{\ln E}{\ln \lambda_3} \right)$$

(14)

where the largest eigenvalue of the linearized map is λ_3^2 with

$$\lambda_3 = \frac{1}{2} \left[\mu^2 + (4 + \mu^4)^{1/2} \right]; \quad \mu = \rho + \rho^{-1}$$

(15)

and where $\bar{\Delta} = 3 \ln \tau / \ln \lambda_3$.

THERMODYNAMICS

From Eq.(3) one notes that the external field h plays the role of the Fermi level. At $T=0$ all states with $E \leq h$ are filled up. One finds, for instance, for the magnetization

$$M(h,T=0) = - \frac{\partial F}{\partial h} \bigg|_{T=0} = H(h) - \frac{\Delta}{2}$$

(16)

Hence M is a Cantor function, with the scaling behavior (11) at its gap edges $E_g \neq 0$ and the behavior (14) at $h = 0$. The zero temperature susceptibility is an ill-defined quantity (zero or infinite).

From (3) and (14), we deduce for the specific heat

$$C(h=0;T) \sim \frac{\ln T}{\ln \lambda_3} R_0 \left(\frac{\ln T}{\ln \lambda_3} \right)$$

(17)

where R_0 is a periodic function with unit period, expressible in terms of P_0.

Since $0 < \bar{\Delta} < 1$, Eq.(17) interpolates between the uniform case ($\rho=1; \bar{\Delta}=1$) and the totally random case ($C \sim (\ln T)^{-2} \Rightarrow \bar{\Delta} = 0^*$).

The susceptibility behaves as

$$\chi(h=0;T) \sim \frac{\ln T}{\ln \lambda_3} R_1 \left(\frac{\ln T}{\ln \lambda_3} \right)$$

(18)
Plots of $C(h=0;T)$ and $\chi(h=0;T)$ are presented in Figs. 2 and 3 for the case $\rho=3$. It is seen that C may exhibit an infinity of regions of non-monotonic behavior.

Fig. 2: Log-Log plot of the zero-field specific heat against temperature, for $\rho=3$.

For $h = E_g$, relations similar to Eqs. (17)-(18) hold, with Δ and $|\lambda_2|$ replacing $\bar{\Delta}$ and λ_3, respectively. For values of h inside one of the gaps, low-temperature excitations are damped exponentially: nothing interesting happens in a desert.

Fig. 3: Same as Fig. 2 for the zero-field susceptibility.
ACKNOWLEDGEMENT

This work was supported by the Netherlands Organization for the Advancement of Pure Research (Z.W.O.).

REFERENCES