COHERENT EXCITATION AND EVOLUTION OF TWO-PHONON STATES IN MOLECULAR CRYSTALS

F. Vallée, G. Gale, C. Flytzanis

To cite this version:
F. Vallée, G. Gale, C. Flytzanis. COHERENT EXCITATION AND EVOLUTION OF TWO-PHONON STATES IN MOLECULAR CRYSTALS. Journal de Physique Colloques, 1985, 46 (C7), pp.C7-281-C7-286. <10.1051/jphyscol:1985751>. <jpa-00225080>
COHERENT EXCITATION AND EVOLUTION OF TWO-PHONON STATES IN MOLECULAR CRYSTALS

F. Vallée, G. Gale and C. Flytzanis

Laboratoire d'Optique Quantique, Ecole Polytechnique, 91128 Palaiseau Cedex, France

Abstract - Picosecond coherent excitation and probing techniques are employed to measure the temperature dependence of the dephasing times \(T_2 \) of the very weak \(2\nu_2 \) two-vibron bound states in solid nitrous oxide and of the composite \(\{\nu_2 + \nu_4\} \) bound state in crystalline ammonium chloride. These results highlight the importance of the strength of Fermi resonance on two-phonon dynamics in crystals.

The recent demonstration of coherent excitation of two-phonon states in molecular crystals [1-4] offers some attractive possibilities to selectively study and exploit anharmonic interactions in crystals. Although optical transitions to these states as a general rule are much weaker than to one-phonon states their number is much larger: indeed optically accessible two-phonon states are formed by pairing phonons with opposite wave vectors all over the Brillouin zone in contrast to the one-phonon states that are restricted in the center of the Brillouin zone. Even so these two-phonon states as a general rule form a continuum over an energy range \(2W \) where \(W \) is the phonon branch width and their coherent excitation is in general not feasible. However under certain conditions the anharmonic terms of the third and fourth order, \(h^{(3)} \) and \(h^{(4)} \) respectively, in the usual expansion of the lattice hamiltonian [5-6]

\[
h = h^{(0)} + h^{(3)} + h^{(4)}
\]

cause a spectral condensation into narrow regions [7] leaving behind a residual weaker continuum of the free two-phonon states. Because of their relatively narrow line-width and nonnegligible oscillator strength these local states can be coherently driven with high efficiency [2-3] and their subsequent evolution and decay process observed. Below, we review briefly the main results obtained with the CAHORS technique and present some more recent ones in \(N_2 O \) and \(NH_4Cl \).

The above mentioned spectral condensation occurs as a consequence of a subtle interplay of the intermolecular and intramolecular forces. Thus if the strength \(\Gamma \) of the fourth order term \(h^{(4)} \) which is mainly intramolecular is larger than the phonon branch width \(W \) a bound two-phonon state splits off the continuum. If a one-phonon state couples with the two-phonon continuum and is nearly degenerate with such a bound or quasibound two-phonon state then a "Fermi doublet" appears [7] with its two components on either side of a much weaker residual continuum of free two-phonon states [8,9,10].

In the CAHORS technique these "local" states are coherently driven by two time coincident picosecond pulses of frequencies \(\omega_L \) and \(\omega_S \) respectively with \(\omega_L -\omega_S = \Omega_o \),

\[
\text{Article published online by EDP Sciences and available at } \url{http://dx.doi.org/10.1051/jphyscol:1985751}
\]
the "local" compound phonon frequency, and the coherence evolution of this state is followed by delayed antistokes scattering at \(\omega + \Omega \) of a probe pulse at frequency \(\omega_p \). The experimental setup is described elsewhere [3]; the high sensitivity of our experimental system which allows a dynamic measurement range of \(10^3 \) for a strong Raman scatterer, means that previously inaccessible weak Raman features may now be studied and that the coherent exclusion of narrow Raman lines in a cluttered region of the spectrum may be isolated.

The description of this technique is most conveniently presented in terms of the optically accessible two-phonon coordinate

\[
\langle q_+ q_- \rangle = \text{Tr} \rho q_+ q_-
\]

where \(q_+ \) and \(q_- \) are the simple phonon coordinates with wavevector \(k \) and \(-k\) respectively and \(\rho \) is the density matrix operator in the optically accessible two-phonon state space. The definitions and properties of this coordinate are given elsewhere [11].

We present below a simple description of the dynamics of the two-phonon states and for simplicity we limit ourselves to the dynamics of the \(2v_2 \) state coupled with the \(v_1 \) state in a crystal with triatomic molecules (\(\text{CS}_2 \), \(\text{CO}_2 \),...); this situation actually is quite general and encompasses many other cases with minor changes. In order to include Fermi resonances we assume that the \(v_1 \) single phonon state (state, \(|10> \), coordinate \(q_1 \) and frequency \(\omega_1 \)) and the \(2v_2 \) bi-phonon or resonance (state \(|02> \), coordinate \(q_{22} = q_2^2 \) and frequency \(\Omega_2 \)) interact through the third order anharmonic term

\[
h_{122} = \delta_{122} q_1 q_2^2
\]

where only non vanishing matrix element is \(h_{12} = \langle 10 | h_{12} | 02 \rangle \); the main effect of the fourth order term \(h_{4} = \gamma q_4^4 \) is taken into account in the formation of the bound or quasibound two-phonon state but a residual term is still left which can couple the biphonon with the parent free two-phonon states or the low lying intermolecular modes.

The coupling of the above states with the total field \(E = E_L \cos(\omega_L t) + E_S \cos(\omega_S t) \) in a Raman excitation process, with \(\omega_L - \omega_S \) near resonance, is mediated by the first order Raman tensor of mode \(1 \), \(\alpha_1(1) \) and the second order Raman tensor of order 2 \(\alpha_2^2 \), through \(h' = -\frac{1}{2} \alpha E^2 \) with \(\alpha = \alpha_0 + \frac{1}{2} \alpha_1(2) \). The anharmonic interaction between \(\omega_1 \) and \(\Omega_2 \) leads to mixing of the wavefunctions and the production of two new states [3] whose frequencies \(\Omega_+ \) and \(\Omega_- \) are given, for small \(\Omega_2 \) phonon branch width by a unitary transformation \(u \),

\[
\begin{bmatrix}
\Omega_+ \\
\Omega_-
\end{bmatrix} = u \begin{bmatrix}
\omega_1 & \beta \\
\delta & \Omega_2
\end{bmatrix} u^{-1}
\]

with

\[
u = \begin{bmatrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{bmatrix}
\]

and \(\theta = \frac{1}{2} \tan^{-1}(2\delta \alpha \omega_1 - \Omega_2) \). The coherent amplitudes \(\Omega_+ \) and \(\Omega_- \) at \(\Omega_+ \) and \(\Omega_- \) are driven by Raman interactions \(A_+ E^2 \) and \(A_- E^2 \) respectively according to the equations

\[
\begin{align*}
\ddot{\Omega}_+ + \Gamma_+ \dot{\Omega}_+ - \Gamma' \dot{\Omega}_- + \Omega_+^2 \Omega_+ &= A_+ E^2 \\
\ddot{\Omega}_- + \Gamma_- \dot{\Omega}_- - \Gamma' \dot{\Omega}_+ + \Omega_-^2 \Omega_- &= A_- E^2
\end{align*}
\]

with the transformed Raman tensors defined by

\[
\begin{bmatrix}
A_+ \\
A_-
\end{bmatrix} = u \begin{bmatrix}
\alpha_1 \\
\alpha_2
\end{bmatrix}
\]

where \(\alpha_n = \langle \alpha_n | q_n \rangle / n \) and
and \(\gamma_1 \) and \(\gamma_2 \) are the damping of the undressed mode amplitudes \(q_1 \) and \(q_2 \) respectively. Clearly for \(\beta/(\Omega_2 - \omega_1) \ll 1 \) equation (1b) reduces to

\[
\begin{bmatrix}
\gamma_1 \alpha' \\
\gamma_2 \alpha'
\end{bmatrix} = u \begin{bmatrix}
\gamma_1^0 \\
0
\end{bmatrix} u^{-1}
\]

the equation also derived in (1).

The solution in time domain of the two equations (1a-b) is fairly complex but some insight can be gained by their solution in frequency domain. Thus keeping only the term \(E^2 \) which is near resonance with \(\Omega_+ \) and \(\Omega_- \) one gets

\[
Q_+ = \frac{\frac{i\Gamma_A (\omega_L - \omega_S)}{\Omega_+^2 - (\omega_L - \omega_S)^2 - i\Gamma_+ (\omega_L - \omega_S)} E_L E_S}{[\Omega_+^2 - (\omega_L - \omega_S)^2 - i\Gamma_+ (\omega_L - \omega_S)] + (\omega_L - \omega_S)^2 \Gamma_{+2}/\Omega^2_{+} - (\omega_L - \omega_S)^2 - i\Gamma_+ (\omega_L - \omega_S)}
\]

and similarly for \(Q_- \). For \(\beta/(\Omega_2 - \omega_1) \ll 1 \), (2) reduces to

\[
Q = Q_0 = \frac{1}{4} \alpha'' E_L E_S \frac{\Omega_0^2 - (\omega_L - \omega_S)^2 - i\Gamma_0 (\omega_L - \omega_S)}{\Omega_0^2 - (\omega_L - \omega_S)^2 - i\Gamma_0 (\omega_L - \omega_S)}
\]

which is the solution of an harmonic oscillator with constant damping. To a certain extent expression (2) is similar to (3) with an effective damping constant that may strongly depend on frequency. In particular one mode may grow as a consequence of the driving of the other mode. Note that for \(\gamma_1 = \gamma_2 \) one has \(\Gamma_+ = \Gamma_- \) and \(\Gamma' = 0 \) and the modes amplitudes are completely decoupled harmonic oscillators.

For large coupling \(\beta/\omega_1 - \Omega_2 \gg 1 \) the \(\omega_1 \) and \(\Omega_2 \) states are almost completely mixed and displaced in energy by approximately \(\pm \beta \). Both states have comparable Raman strength \(A_+ \sim A_- \sim \alpha_0/\sqrt{2} \) on the order of that of first order transitions. The above situation arises in CO\(_2\), the classic example of strong Fermi resonance.

For weak coupling and considering \(\omega_1 > \Omega_2 \), the one phonon state moves up by \(\beta/(\omega_1 - \Omega_2) \) and the bound state down by the same amount. For the bi-phonon the Raman coupling becomes

\[
A_+ = a_2 - a_1 \beta/(\omega_1 - \Omega_2)
\]

The first term creates two-phonon states directly through the electrical anharmonicity and the second indirectly through mechanical anharmonic coupling between \(\omega_1 \) and \(\Omega_2 \). Notice that these two terms may interfere destructively.

The amplitudes \(Q_+ \) and \(Q_- \) modulate the polarization set up by \(E \) and in the probing stage the electromagnetic field of frequency \(\omega \) is scattered off the vibrational overtone shifted in frequency by the compound state frequency, \(\omega^{\pm} = \omega - \Omega_{\pm} \) and \(\omega^\pm = \omega + \Omega_{\pm} \) the Stokes and antistokes frequencies respectively. The nonlinear polarisation source term may be written

\[
P_{NL} = N (A_+ Q_+ + A_- Q_-) E^4 + P_{nr}
\]

in analogy with one-vibron processes.

We have studied the coherent relaxation of the 2\(\nu_2 \) two-vibron bound state at \(1165 \text{ cm}^{-1} \) in solid nitrous oxide as a function of temperature from 77 K to 177 K, just below the crystal melting point \(141 \). As N\(_2\)O is asymmetric (symmetry group \(C_3 \)) and in the crystal (T group) there are 4 molecules per unit cell on \(C_3 \) sites, this mode should be split into two components of A and F symmetry. Because nitrous oxide is an orientationally disordered crystal (with respect to the direction of the
molecule NNO or ONN) there are no rigorous Raman selection rules and both the A and F modes should give coherent signals in our experiment, similarly to the observations in spontaneous Raman spectroscopy for the v_1 one-vibron mode [12].

Fig. 1 shows the observed coherent signal (full circles) plotted on a logarithmic scale as a function of probe delay in picoseconds for the $2v_2$ 1165 cm$^{-1}$ mode in solid N_2O at 177 K. Due to the weakness of the coherent diffusion the signal around $t = 0$ is dominated by non-resonant scattering from the cell windows as can be seen from the measurements in an empty cell (open circles - dashed line). After the initial fast rise and fall—in this case essentially limited by the system response—the coherent signal exhibits a pronounced dip, near 10 ps probe delay, followed by a broad maximum and subsequent exponential decay with a $T_2 = 10.9 \pm 0.5$ ps.

This behaviour may be explained in terms of the coherent interference of the A and F symmetry components of this line. We may fit the experimental points using the values $T_2(A) = 4$ ps, $T_2(F) = 10.9$ ps (determined from the long delay slope), $T_2(A) = 10.9$ ps, and the splitting $\Delta v = 1.7$ cm$^{-1}$. Although the calculated curve (full line, Fig. 1) is insensitive to the ratio of the Raman intensities and the exact value of $T_2(A)$ a splitting within 10% of 1.7 cm$^{-1}$ is required to reproduce the observed oscillation. Only a single, essentially destructive, interference beat is seen because of the large difference between the T_2 values of the two closely spaced A and F components of the $2v_2$ line.

We have investigated the effect of temperature on $2v_2$ down to 77 K. No significant qualitative change in the shape of the curves is observed and quantitatively, only a small increase, of about 30%, of coherent decay times occurs in the 177-77 K range. No change in the 1.7 cm$^{-1}$ splitting of the 1165 cm$^{-1}$ $2v_2$ doublet could be detected in this temperature range.

We may interpret the $2v_2$ measurement in terms of an intrinsic relaxation mechanism. As $2v_2$ is only in very weak Fermi resonance with v_1, exemplified by its very small Raman line strength, its spectral position is not significantly perturbed and the 1165 cm$^{-1}$ $2v_2$ doublet is found only about 10 cm$^{-1}$ below the top of the $v_1 + v_2$ free two-phonon quasi-continuum, into which it may decay. This mechanism leads to a coherent decay time T_2 inversely proportional to the density of free two-phonon states and essentially independent of temperature as observed in the present case.
The fact that the A symmetry component always relaxes about three times faster than the F component is indicative of the role of mode symmetry in coherent relaxation processes in solids. We note that a similar result has been observed for the A and F modes of both the v_3 and $2v_3$ bands of the $\{v_1, 2v_3\}$ dyad in crystalline CO$_2$, where Ag relaxation is always about 1.6 times more efficient than that of F. Ammonium chloride belongs to the interesting class of crystals which exhibit an order/disorder phase transition. For NH$_4$Cl this transition (at $T = 242.5$ K) is associated with the relative ordering of the NH$_4^+$ ions in the cubic Cl$^-$ cage. Although this crystal is not molecular, the optical vibrations of the NH$_4^+$ ions, like the molecules in a molecular crystal, interact relatively weakly with each other and hence similar considerations to those developed for molecular crystals may be applied. Below T_A, in the non-centro-symmetric phase, one observes not only polar two-particle bands but also bound states, enhanced by polariton Fermi resonance with polar internal vibrations of the ammonium ion [14].

We have investigated the temperature dependence of the dephasing time of the $\{v_2 + v_{41}\}$ composite bound state at 3070 cm$^{-1}$ which is in strong Fermi resonance with the v_3 one-vibron mode.

Fig. 2 shows the variation of the measured relaxation rate ($2/T_2$) of $\{v_2 + v_{41}\}$ between 20 and 180 K. A strong temperature dependence of more than a factor of 7 is observed in this range, in sharp contrast to the results in N$_2$O solid. Although our interpretation of these very new results is not yet definitive we point out the remarkable similarity between the present observations and those for the v_3 line of CO$_2$ solid [3] another example of strong Fermi resonance between one and two-phonon states.

In conclusion we have seen that time resolved coherent techniques may be usefully exploited to measure previously unavailable relaxation times of two-phonon bound states in a wide variety of experimental conditions and crystal structures. The capability of studying bi-phonons directly substantially enriches our potential knowledge of the vibrational dynamics of solids and we anticipate extension to other many-particle states and manifestations of anharmonicity in crystal physics.

![Fig. 2. Measured coherent relaxation rates ($2/T_2$) for the $\{v_2 + v_{41}\}$ composite two-vibron bound state in NH$_4$Cl as a function of temperature for $T < T_A$ (243 K)](image-url)
REFERENCES

4 - F. Vallée, G. M. Gale and C. Flytzanis to be published in Chemical Physics Letters
5 - see for instance Lattice Dynamics and Intermolecular Forces edited by S. Califano (Academic Press, N.Y., 1975)
13 - P. Ranson, R. Ouillon and S. Califano, 5th International Conference on Dynamical Processes in Excited States of Solids DPC-85 (Journal de Physique - to be published)