ENERGY MIGRATION IN EU3+ COMPOUNDS ; ITS DEPENDENCE ON DIMENSIONALITY AND EU3+-EU3+ DISTANCE
P. Berdowski, M. Buijs, G. Blasse

To cite this version:
P. Berdowski, M. Buijs, G. Blasse. ENERGY MIGRATION IN EU3+ COMPOUNDS ; ITS DEPENDENCE ON DIMENSIONALITY AND EU3+-EU3+ DISTANCE. Journal de Physique Colloques, 1985, 46 (C7), pp.C7-31-C7-34. <10.1051/jphyscol:1985706>. <jpa-00224954>

HAL Id: jpa-00224954
https://hal.archives-ouvertes.fr/jpa-00224954
Submitted on 1 Jan 1985

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
ENERGY MIGRATION IN Eu3+ COMPOUNDS; ITS DEPENDENCE ON DIMENSIONALITY AND Eu3+-Eu3+ DISTANCE

P.A.M. Berdowski, M. Buijs and G. Blasse

Physical Laboratory, State University Utrecht, P.O. Box 80.000, 3508 TA Utrecht, The Netherlands

Abstract - The compound EuAl\textsubscript{3}B\textsubscript{4}O\textsubscript{12} shows thermally activated energy migration among the 5D0 excited level. In NaEuTiO\textsubscript{4} this migration reduces to two-dimensional, down to the lowest temperatures, whereas in EuMgB\textsubscript{5}O\textsubscript{10} one-dimensional migration is observed. For short distances and low temperatures the Eu3+-Eu3+ transfer occurs by exchange.

I - INTRODUCTION

Energy migration in EuAl\textsubscript{3}B\textsubscript{4}O\textsubscript{12} with a three-dimensional structure and Eu-Eu distance of 5.9 Å has been investigated in our laboratory some years ago /1/. These investigations have now been extended to compounds in which the Eu3+ ions occupy lower-dimensional lattices (NaEuTiO\textsubscript{4};2D, EuMgB\textsubscript{5}O\textsubscript{10};1D) and the Eu3+-Eu3+ distances are much shorter. Extended reports are published elsewhere /2-6/.

II - EXPERIMENTAL

The reader is referred to Refs./1-6/ for the experimental details.

III - NaEuTiO\textsubscript{4} /2/

The compound NaEuTiO\textsubscript{4} has a layer structure in which the Eu-Eu distance in the layer amounts to 3.7 Å and between the layers 10 Å (Fig.1). Excitation into the Eu3+ ions is followed by energy migration among the Eu3+ ions. The luminescence output is low, due to efficient trapping of the excitation energy by killer centres (transition-metal ions, mainly iron). This is
Fig. 1 - The crystal structure of NaEuTiO$_4$. Black circles Ti$^{4+}$, open circles O$^{2-}$, hatched circles Na$^+$, dotted circles Eu$^{3+}$.

Fig. 2 - Decay curves of the $^5D_0 - ^7F_2$ Eu$^{3+}$ emission of NaEuTiO$_4$ at 1.2 K and 27.5 K. The fitted curves are discussed in the text.

Table I

<table>
<thead>
<tr>
<th>Compound</th>
<th>Ref.</th>
<th>Eu-Eu distance (Å)</th>
<th>Diffusion constant $(300 \text{ K; cm}^2\text{s}^{-1})$</th>
<th>Hopping time (300 K; s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EuAl$_3$B4O${12}$</td>
<td>1</td>
<td>5.9</td>
<td>8×10^{-10}</td>
<td>8×10^{-7}</td>
</tr>
<tr>
<td>NaEuTiO$_4$</td>
<td>2</td>
<td>3.7</td>
<td>$2 \times 10^{-8} \ast$</td>
<td>2×10^{-8}</td>
</tr>
<tr>
<td>EuMgB2O${10}$</td>
<td>6</td>
<td>4.0</td>
<td>$\sim 10^{-8}$</td>
<td>$\sim 10^{-7}$</td>
</tr>
</tbody>
</table>

\ast $D = 8 \times 10^{-11}\text{cm}^2\text{s}^{-1}$ at 1.2 K.
even the case at 1.2 K. A small part of the excitation energy is trapped by Eu3+ traps. The presence of these traps is due to a slight disorder among the Eu3+ and Na+ ions. These results show that energy transfer between Eu3+ ions at 1.2 K and 3.7 Å separation is possible. Since the $^5\text{D}_0 \rightarrow ^7\text{F}_0$ transition on Eu3+ in NaEuTiO\textsubscript{4} has a certain transition probability, it is not possible to decide on the mechanism which is responsible for the transfer process. Figure 2 shows the decay curves of the intrinsic Eu3+ emission of NaEuTiO\textsubscript{4}. These curves do not become exponential after a certain time as was the case for Eu3+Al\textsubscript{2}B\textsubscript{4}O\textsubscript{12} /1/. It was possible to fit the curves to the expression

$$I(t) = I(0) \exp(-p_t t) (4\pi\alpha^2 \Delta t)^{-1}$$

which has been derived for two-dimensional, diffusion-limited energy migration in the limit $t \rightarrow \infty$ /7/. This, together with the structural data (Fig.1), suggests strongly that the energy migration in NaEuTiO\textsubscript{4} is two-dimensional. Table I contains some migration characteristics.

IV - EuMgB\textsubscript{5}O\textsubscript{10} /6/

The crystal structure of EuMgB\textsubscript{5}O\textsubscript{10} contains linear Eu3+ chains in which the Eu–Eu distance amounts to 4.0 Å; the distance between the chains is 6.0 Å. The luminescence output of the Eu3+ emission of the system Gd\textsubscript{1-x}Eu\textsubscript{x}MgB\textsubscript{5}O\textsubscript{10} increases with x up to $x = 1.0$ at 4.2 K and up to $x = 0.85$ at 300 K. This suggests strongly that at 4.2 K energy migration is of no importance and that at 300 K energy migration occurs, but restricted to one dimension, so that concentration quenching becomes of influence at very high Eu3+ concentration only. This quenching is confirmed by the strong killing action of Ni2+ (on Mg2+ sites) and Na3+ (on Eu3+ sites) on the 300 K luminescence intensity of EuMgB\textsubscript{5}O\textsubscript{10}. The one-dimensional character of the energy migration is confirmed by decay measurements. The latter show that at 4.2 K one-step transfer to killers and Eu3+ traps prevails. At higher temperatures, however, the migration becomes effective. Its temperature dependence can be analyzed and occurs to be due to phonon assistance: below 50 K a T^3 dependence is observed (two-phonon assistance), at higher temperatures an $\exp(-E_{01}/kT)$ dependence with E_{01} the energy difference between the $^7\text{F}_0$ level and the lowest $^7\text{F}_1$ level. Of main importance is that all decay curves can be fitted to the expression

$$I(t) = I(0) \exp(-p_t t - Bt^{1/3})$$

Fig. 3 - Decay curve of the $^5\text{D}_0 \rightarrow ^7\text{F}_2$ Eu3+ emission of EuMgB\textsubscript{5}O\textsubscript{10}:0.1% Na3+ at 130 K. The fitted curve is discussed in the text.
indicating one-dimensional energy migration (see Fig. 3). The concentration dependence of the luminescence output suggests $P_{\text{intra}} > P_{\text{rad}} > P_{\text{inter}}$, where the P's denote the probabilities for transfer between Eu$^{3+}$ in the chain, radiative Eu$^{3+}$ decay and transfer between Eu$^{3+}$ in different chains, respectively. We found P_{rad} to be 350 s^{-1} and estimated P_{intra} to be about 10^7 s^{-1} (see also Table 1). This yields $P_{\text{intra}} < 10^2 \text{ s}^{-1}$. The Eu$^{3+}$-Eu$^{3+}$ transfer probability decreases therefore with a factor $> 10^5$ when the distance increases from 4.0 to 6.0 Å. This pronounced distance dependence points strongly to an exchange-mediated transfer.

V - Eu$_2$Ti$_2$O$_7$ /5/

To demonstrate the existence of exchange interaction between Eu$^{3+}$ ions further, we investigated the pyrochlore Eu$_2$Ti$_2$O$_7$. In this structure the Eu$^{3+}$ ions occupy sites with inversion symmetry. In this way the $^5D_0 - ^7F_0$ transition is forbidden completely, so that transfer by multipoles will vanish at low temperatures. On the other hand the Eu$^{3+}$-Eu$^{3+}$ distance in Eu$_2$Ti$_2$O$_7$ is 3.6 Å which makes transfer by exchange well possible. Unfortunately a slight disorder in Eu$_2$Ti$_2$O$_7$ induces a rather large amount of Eu$^{3+}$ ions which feel an effectively lower symmetry without an inversion centre. Nevertheless it was possible to show that energy migration among the Eu$^{3+}$ ions occurs down to the lowest temperatures which is another strong indication that the Eu$^{3+}$-Eu$^{3+}$ transfer occurs by exchange. In EuAl$_2$B$_4$O$_{12}$ the Eu-Eu distance is obviously too long (5.9 Å) to allow energy transfer by exchange interaction at low temperatures. Transfer is only possible via thermal population of the 7F_1 level. In conclusion we have demonstrated three-, two-, and one-dimensional energy migration for one and the same system of ions, viz. Eu$^{3+}$. The contribution of exchange interaction to the transfer steps involved must be considerable if the Eu-Eu distance is not too long.

Acknowledgement
These investigations were supported by the Netherlands Foundation for Chemical Research (SON) with financial aid from the Netherlands Organisation for Advancement of Pure Research (ZWO).

REFERENCES