THE INFLUENCE OF ANISOTROPY AND DOMAIN STRUCTURAL FACTORS ON INITIAL PERMEABILITY OF PERMALLOY

G. Ban, L. Szentmiklosi

To cite this version:

G. Ban, L. Szentmiklosi. THE INFLUENCE OF ANISOTROPY AND DOMAIN STRUCTURAL FACTORS ON INITIAL PERMEABILITY OF PERMALLOY. Journal de Physique Colloques, 1985, 46 (C6), pp.C6-393-C6-396. <10.1051/jphyscol:1985673>. <jpa-00224928>

HAL Id: jpa-00224928
https://hal.archives-ouvertes.fr/jpa-00224928
Submitted on 1 Jan 1985

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
THE INFLUENCE OF ANISOTROPY AND DOMAIN STRUCTURAL FACTORS ON INITIAL PERMEABILITY OF PERMALLOYS

G. Ban and L. Szentmiklosi

Non Ferrous Metal Factory of the CsepeZ Works, P.O. Box 49, H-1751 Budapest, Hungary

Abstract

Examinations were carried out on Mo-permalloy (Ni: 80.2 wt%; Mo: 4.7 wt%; Mn: 0.5 wt%; Fe: R) to study the effects of the magnetocrystalline and magnetostrictive anisotropy energies, the grain size and impurity contents on the initial permeability /IP/ and coercive force /CF/, respectively. The IP was influenced mainly by the S and O₂ content at given anisotropy energies. More advantageous manufacturing and annealing conditions were also determined.

Introduction

This work intends to study the Mo-permalloy material in respect of essential physical effects which determine the IP and CF of the material so that the most advantageous manufacturing and annealing conditions could be determined. The magnetic anisotropy energy directly unfolds its effect on the IP and CF by means of the rotational process of magnetisation. An indirect effect, however, on the IP and CF can also be attributed to the anisotropy energies through the determination of the domain wall energy and the actual built-in of the domain structure in a given grain structure. The grain structure and impurity content also unfold a considerable influence an the domain wall motion, which appears in the technical parameters, as well. The complex appearance of these effects can only be studied by simultaneous examinations of anisotropy energies and domain structure.

In the work presented here we proposed to examine how the magnetocrystalline and magnetostrictive anisotropy energies, the grain size and impurity contents determine the IP and CF, respectively. The anisotropy parameters (K₁; λ₁₀₀; λ₁₁₁) were derived from advanced approach to saturation measurements /1,2/ while the domain structure characteristics - such as average domain size (2a); domain wall restoring pressure (κ); rotational part of the IP (K₂) - were derived from the fit of the complex IP vs. frequency spectra with proper theoretical models /3,4,5/. The average grain size (D) was determined by linear intercept method and the impurity content by the thermal conductivity analysis /O₂ content/ and infra-red analysing method /C and S contents/.

Experimental

Two parallel experiments were performed so as to reach our aim: at first, the
magnetocrystalline and magnetostrictive anisotropy energies were changed widely, while the average grain sizes and impurity content were restricted at nearly equal level /ExpI/. For second, very different grain sizes and impurity contents were generated at approximately equal anisotropy constants /ExpII/. Both experiments were performed on Mo-permalloy (Ni 80.2 wt%; Mo 4.7 wt%; Mn 0.5 wt%; Re Fe) materials.

In ExpI the samples were prepared from sheets cold rolled to the required 0.2 mm thickness, a 50% final reduction. Toroidal samples were punched for the IP and CF measurements and 50x2 mm strips were cut from the same part of the sheet for the anisotropy measurements. Each sample was annealed for 4 hours at the 1250 °C temperature, then furnace cooled at 100 °C per hour to room temperature. This kind of heat treatment yielded more or less same average grain sizes - about 0.52 mm of diameter - and the same measure of the purification, which means 6<10ppm; 5<2ppm; Q<25ppm, respectively.

To reach the proper anisotropy energies the samples were baked in vacuum for 2 hours at a temperature (Tq) ranging between 400-800 °C that was followed by rapid cooling to room temperature. This baking did not essentially influence the grain sizes and impurity contents established earlier. This kind of preparation of the samples made it possible for us to reach very different anisotropy energy values with constant grain sizes and impurity contents. The constances of the magnetocrystalline and magnetostrictive anisotropy energies - Kt ; and λm - were determined by means of approach to saturation measurements improved by us earlier for polycrystalline materials. In this method the common examination of the external magnetising field (H) and the external elastic stress (G0) dependence of the approach to saturation made it possible to experimentally eliminate the influence of the disturbing non-anisotropic effects. These measurements are suitable for the determination of very low value of Kt (in order of 10 J/m3) and λm (in order of 10^-7) (see further details in ref.2.).

The toroidal and strip samples of the Exp II. were prepared from cold rolled sheets of different thickness and final reductions (see Table 1). The atmosphere of the final annealing was also varied but all the samples were exposed to the same annealing procedure: holding on 1250 °C for 4 hours then cooled in furnace at about 100 °C per hour to room temperature. This kind of preparation of samples resulted in very different grain sizes and purifications during the holding, while the fairly similar cooling process yielded close values of the anisotropy and magnetostrictive constants /showed also in Table 1/.

Table 1: The data of the samples prepared for Exp II.

<table>
<thead>
<tr>
<th>Sample</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample thick./mm/</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.15</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>Annealing atmos.</td>
<td>H2</td>
<td>V</td>
<td>H2</td>
<td>H2</td>
<td>H2</td>
<td>H2</td>
<td>H2</td>
<td>H2</td>
</tr>
<tr>
<td>Final reduct./%</td>
<td>50</td>
<td>80</td>
<td>80</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Kt /J/m3/</td>
<td>-9.1</td>
<td>-12.2</td>
<td>-8.6</td>
<td>-3.2</td>
<td>-4.5</td>
<td>-8.7</td>
<td>-4.2</td>
<td>-10.4</td>
</tr>
<tr>
<td>(λm/100-Kt)10^-6</td>
<td>1.6</td>
<td>1.7</td>
<td>1.6</td>
<td>1.2</td>
<td>1.2</td>
<td>1.6</td>
<td>1.3</td>
<td>1.7</td>
</tr>
<tr>
<td>IP</td>
<td>42530 30710 49120 71550 57850 42210 53850 36070</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The anisotropy measurements were carried out on strip samples, while the IP, CF and complex IP measurements on toroidal samples.

The complex IP measurements were performed on Maxwell bridge in very low fields between 0.016-0.04 A/m in the 80 Hz-26 kHz frequency range. Linear extrapolation for H=0 was applied to determine the field-independent complex IP values for each selected frequency point. All of the samples were measured after a 50 Hz demagnetisation, where the starting field applied was 40000 A/m, respectively (see further details in ref.6).

The three applied theoretical models to fit the measured spectra were derived from the equation of motion of the 180° Bloch walls by K.L.M. Polivanov /3/ and J.E.L. Bishop /4,5/.

All of the models have some common assumptions related to the domain structure such as : mainly 180° Bloch wall form a bar-shape domain structure ; the
Figure 1. The effect of K_1 and λ_{111} on the IP and CF as a function of baking temperature (T_q).

Figure 2. The effect of the average domain size and impurity content on the domain structural and technical magnetic properties. The examined parameters - the μ_0 and H_c; the impurity contents (C, S, O); the restoring pressure (C); the rotational ratio of the IP (D_{2a}); and average number of domains in a grain ($D/2a$) - are presented as a function of the average grain size (D).
walls are perpendicular to the sheet surfaces and don't interact with each other;
the magnetization of domains has no normal component to the sheet surfaces.
The differences of the used models are in the assumptions related to the domain
wall motion: the Polivanov model /3/ supposes ideal bowing motion of the walls,
which means that the inertia of the walls \(m \), the spin relaxation damping \(\gamma \),
the restoring forces \(E_{\alpha} \) and the finite wall energy \(E_{\beta} \) were not taken into
account. Only the average domain wall spacing \(2a \) determine the actual value of
the complex IP \(P_{\text{mode1}} \). Bishop improved the Polivanov model in two ways so
expanding the validity of the model on higher frequencies. His first approxima-
tion /4/ discussed a more complex way of motion where \(E_{\alpha} \), \(E_{\beta} \) were also not zero
(BI. model). In his other solution /5/ only the rotational magnetization process
was considered in addition to the ideal bowing motion of walls (BII.model)
- which was neglected in two solutions mentioned above.

Results

The results of these experiments are presented in fig.1 and 2.
Fig. 1. shows the effect of \(\lambda_{\text{III}} \) and \(K_1 \) on the technical magnetic properties (IP and CF). It can be seen that zero crossing of \(K_1 \) and \(\lambda_{\text{III}} \) show increasing in IP and decreasing in CF and \(K_1 \) has a greater effect than \(\lambda_{\text{III}} \). This examination made it possible to determine an ideal Tq temperature for the rapid cooling following the heat treatment. That was 500°C for this composition.
The results of Exp II can be seen in Fig.2. Two results are striking at the
study of this figure: every parameter strongly correlates to the IP, except the
\((0/2a)\) ratio that shows similar behaviour to that of CF.
Let us consider the case of IP. When the domain wall motion was hindered by the
impurities, the restoring pressure rose onto higher values and the rotational
ratio in the magnetization process was also considerable - all that appears in a
lower IP value. In this point of view the carbon content carried no importance.
All these results are in good agreement with the observations of many other
workers /8,9/.
The changes of the CF were rather monotonous, which was expected in this consider-
ration. Only the \((0/2a)\) ratio correlated closely to the CF, which is in good agree-
ment with our earlier results: we had found that - in the materials where
\(K_1 \) is near to zero - the \((0/2a)\) ratio is basically determined by the average
grain size and the sheet thickness /7/.
This experiment also proved some result in technological respect: the best IP
and CF values were reached at 50% final reduction and 0.2 mm sheet thickness
annealing the samples in \(\text{H}_2 \) atmosphere.

Conclusion

On Mo-permalloy material we performed examinations to determine the effects of
the magnetocrystalline and magnetostrictive anisotropy energies and the effects
of the grain and impurity structures on the IP and CF, respectively.
The effect of \(K_1 \) was more decisive than that of \(\lambda_{\text{III}} \) and at given aniso-
tropy energies the IP was basically governed by the impurity content while the
CF was mainly determined by the grain and statical domain structure.
A more advantageous manufacturing and annealing condition was also found for
this material.

References :