DOMAIN WALL DYNAMICS IN ORTHORHOMBIC GARNETS
D. Krumbholz, J. Heidmann, J. Engemann

To cite this version:
D. Krumbholz, J. Heidmann, J. Engemann. DOMAIN WALL DYNAMICS IN ORTHORHOMBIC GARNETS. Journal de Physique Colloques, 1985, 46 (C6), pp.C6-141-C6-144. <10.1051/jphyscol:1985625>. <jpa-00224873>

HAL Id: jpa-00224873
https://hal.archives-ouvertes.fr/jpa-00224873
Submitted on 1 Jan 1985
DOMAIN WALL DYNAMICS IN ORTHORHOMBIC GARNETS

D. Krumholz, J. Heidmann and J. Engemann

University of Wuppertal, Dept. of Electrical Engineering, 5600 Wuppertal 1, F.R.G.

Résumé - Comme première investigation sur l'application de la mémoire à lignes de Bloch sur le granat orthorhombique, comme proposé par Konishi, on a fait des simulations résolues en temps du mouvement de la paroi et des expériences dynamiques. Comme résultat principal, la nucléation des lignes de Bloch horizontales a été établie pour la première fois comme l'effet qui limite la vitesse. Puis on a examiné la dépendance de la vitesse maximale pour la nucléation des lignes de Bloch horizontales, sur l'épaisseur du film et sur la direction du mouvement relatif de la paroi par rapport à l'axe moyen.

Abstract - As a preliminary investigation for applying the Bloch line memory concept, as proposed by Konishi, to orthorhombic garnets, time resolved simulations of wall motion and dynamic experiments were carried out. As a main result, horizontal Bloch line nucleation was for the first time clearly established as the velocity limiting effect. Consequently the dependence of maximum velocity, due to horizontal Bloch line nucleation, on film thickness as well as on the direction of wall movement relative to the medium axis was examined.

I - INTRODUCTION

Extensive investigation of garnet films having orthorhombic anisotropy proves the general existence of two basic domain structures in materials of this class. Characteristic for the most elementary topological state is the uniform orientation of the central wall magnetization (Fig.1b), which parallels the medium axis of anisotropy (m.a.). The second basic state exhibits Bloch line structures, whereby the central wall magnetization is governed by the stray field (Fig.1a,c). Resulting in a variety of wallstates most of which are metastable. The degree to which magnetostatic energy is minimized determines the particular Bloch line structure. The segmentation of stray field oriented areas in such domains can occur diversely owing to static horizontal and vertical Bloch line segments (HBL and VBL respectively). These Bloch line structures, characteristic for orthorhombic materials, will be designated by the following notation: (n/VBL/mHBL) and (m the quantity of VBL-segments, n the quantity of HBL-segments). So far there is no experimental evidence of the stable existence of Bloch points. Given a comprehensive understanding of wall state characteristics in orthorhombic garnets /1,2/, inference can be drawn about the mechanisms governing observed dynamic conversions. One necessary condition for the extension of Konishi's Bloch Line Memory (BLM) concept /3/ to orthorhombic garnets, the nucleation of horizontal Bloch lines, was demonstrated experimentally and in time resolved computer simulations. In order to achieve an improved quantitative comprehension of the dynamic Bloch line phenomena, time resolved computer simulations of the motion of a straight domain wall with and without BLM were conducted.

II - THEORY

As was already shown when limited to a steady state approximation /4/, the observed wall structures are part of the quantity of solutions of Slonczewski's equations of motion when extended by the orthorhombic anisotropy /5/. In addition, extended equations of motion were derived by employing Slonczewski's treatment, accompanied by the increased extension of the model used. Other extended versions were given by Hubert /6,7/. The coordinate system employed here is defined in /4/, as well as the notation used. Complementations to the notation are as follows: wall width $\Delta = \sqrt{(A/K_u)}$, wall position r normalized to A, z-coordinate normalized to film thickness h, Gilbert damping parameter, gyromagnetic ratio γ and the pulse field h_p normalized on $4\pi M_s$. The examined extensions of the model make use of the description of an isolated planar wall under influence of an inplane field outlined in /1/. This model has been proved right when applied as description of all the wallstates' properties observed /1,4,8/. Turning over to a finite height film, the effective inplane field is composed of an external portion h_p and the contribution of the domain wall stray field h_s according to Hubert /6/. Defining an effective inplane field

$$h_p = h_p \cos(\varphi - \varphi_1) + h_s(z) \cos(\varphi - \varphi_n)$$

(1)
and an effective quality factor

\[Q' = \left(\frac{\Delta_0}{h} \frac{d\phi}{dz} \right)^2 + Q_1 + Q_2 \sin^2 \phi + \cos^2 (\phi - \phi_n) \]

(2)

the magnetization tilt \(\delta_\infty (z) \) can be expressed

\[\sin \delta_\infty (z) \approx h_i \phi / Q' \]

(3)

under the assumption \(\phi = \phi_n = \text{const.} \)

This leads to the wall energy density

\[\sigma = \delta_0 \left(\frac{Q'}{Q_1} \right)^{1/2} \left[Q_1^{-1/2} \cos \delta_\infty (z) - \frac{\pi - 2 \delta_\infty (z)}{2 Q_1^{1/2}} h_i \phi \right] \]

(4)

and the domain wall width

\[\Delta (z) = \frac{\Delta_0}{1 - \sin \delta_\infty (z)} \left[\frac{Q_1}{Q'} \right]^{1/2} \]

(5)

Equations of motion proposed by Slonczewski /5/ were modified by introducing the magnetization tilt in order to simply consider the influence of an inplane field /1/. Following Slonczewski's treatment and incorporating eqs. (1) to (5) the subsequent Partial Differential Equations (PDEs) are derived under the assumptions that the derivatives of \(\delta_\infty (z) \) and \(h_i \phi (z) \) are small (dots denote time derivatives).

\[\dot{\phi} = \gamma \frac{\delta_0}{1 + \alpha^2} 4 \pi M_0 \left[\alpha G(t) \alpha F(\phi) + \frac{\Delta_0}{h} \left[\frac{d^2 \phi}{dz^2} + \frac{d^2 \phi}{dz^2} \right] \right] \]

(6)

\[\dot{G} = \frac{\gamma}{1 + \alpha^2} 4 \pi M_0 \left[G(t) - \frac{\alpha F(\phi) + \frac{\Delta_0}{h} \left[\frac{d^2 G}{dz^2} + \frac{d^2 \phi}{dz^2} \right] }{1 + \alpha^2} \right] \]

(7)

where

\[G(t) = h_p P(t) - h_c \text{sgn} \dot{\phi} \]

(8)

\(P(t) \) represents the experimental pulse shape, \(h_c \) the coercive field, and

\[F(\phi) = \frac{1}{2} \left[Q_2 \sin 2\phi - \sin 2(\phi - \phi_n) + \frac{\pi - 2 \delta_\infty}{\cos \delta_\infty} [h_i \sin (\phi - \phi_n) + h_n \sin (\phi - \phi_n)] \right] \]

(9)

Boundary conditions are as follows:

\[\frac{d\phi}{dz} \bigg|_{z=0, z=1} = 0 \]

(10)

The time dependent solution for the equations of motion is reached by the explicitly finite difference procedure as given by Duford-Frankel /9/. Konishi's modification /10/ leads to a significant increase in computational stability. The reliability and plausibility of the solutions obtained is controlled by varying the partition of the time and space intervals respectively through comparison to steady state results.

III - EXPERIMENTAL AND NUMERICAL METHODS

The bubble rocking experiment /11/ was used to examine dynamic transitions between wall states with and without Bloch line structures. Experimental results presented here refer to sample 0814 with composition \(\text{Y} \text{Gd}_a, \text{Fe}_b \text{Ga}_c \text{Mn}_d \) Gd2 and following material parameters: \(h=4.3 \mu \text{m}, Q_1=10.6, Q_2=-8.23, 4\pi M_0=164.46 \text{ G}, \Lambda=1.9 \times 10^{-7} \text{ erg/cm}, \alpha=0.01275, \gamma=1.8659 \times 10^4 \times \text{Oe}^{-1} \). Local HBL-nucleation could be demonstrated at a \((0,0/0)\)-stripe head (Fig.1d) by dynamic elongation of the stripe domain or a local inplane field acting on the stripe domain head. The rocking experiment yields the specific pulse time \(t_p \) where a dynamic state transition is observed at a fixed
Experimentally observed dynamic wall conversions

Pt: HBL-punchthrough, nc: HBL-nucleation

Pulse time $t_p = t_{nc}$ for HBL-nucleation versus drive field $H_{p,\text{max}}$

bubble rocking experiment

- data from computer simulations

Schematic dynamic stability map

The solid lines represent translational bubble motion along different ways q

1. HBL-punchthrough, II. HBL-nucleation, III. Wall oscillation

Typical time resolved Bloch line nucleations (sample OBI)

a.) $Q_z = -0.25$, time step: 2.27 ns, nucleation after 28.4 ns, $<q_{\text{max}}>$ = 335.3 m/s

b.) $Q_z = 0$, time step: 2.56 ns, $<q_{\text{max}}>$ = 115.59 m/s
amplitude $H_{p,\text{max}}$. Subsequently the resultant state can be discriminated taking advantage of the well known properties of wall states in orthorhombic garnets /1/. Experimental verifications of conversions by HBL-nucleation are: $H_{p,\text{max}} > H_{o}$ (Fig.2). Two conversions can be attributed to HBL-punchthrough, $H_{o} < H_{p,\text{max}}$ (Fig.1) and a similar linear relation can be found between $H_{p,\text{max}}$ and the pulse time $t_{p} = t_{p,\text{p}}$ (Fig.3). As an appropriate procedure to experiments in computer simulations it is approached by successive pulse width increases with an increment $\Delta t = 1$ ns. Time development of wall momentum $\langle \dot{y} \rangle$ (averaged over film thickness) serves as criterion for pulse width incrementation /1/. Computer simulations firstly focus on a Néel wall and secondly on a Néel wall with SHP both moving parallel to m.a. similar to the wall states $(0,0/0)$ and $(0,2/1)^{+}$ or $(0,4/2)$ respectively.

IV - RESULTS AND DISCUSSION

Experimental results concerning HBL-nucleation supplemented with HBL-punchthrough data lead to a dynamic stability map (Fig.4) for stray field oriented domains and those without Bloch line structures. As main results can be stated that beyond the range of HBL stability there are new statically and dynamically stable wall states whereas Bloch line instability leads to nonlinear wall motion in films with negligible inplane anisotropy /12/. The lines in Fig.4 specify a translational motion of a bubble physical constant q_{N} i.e. a proportional relation to domain velocity, demonstrating possible induced state conversions. Starting from $(0,4/2)$ (q_{p}) punchthrough takes place at the first stability boundary resulting in the state $(0,0/0)^{+}$. Further increase in pulse amplitude keeping the translational distance constant q_{p} fixed but the nucleus stability range is approached (Fig.4). As an appropriate threshold value $H_{p,\text{max}}$ for punchthrough onset found.

Punchthrough - Comparison of experimental data with computer simulations exhibit an excellent agreement within the systematical uncertainties of simulation and experiment (Fig.3). The agreement also includes the threshold value H_{o} for punchthrough onset.

Nucleation - In contrast the threshold for HBL-nucleation is significantly lower than that yielded by simulations (Fig.2) although quantitative agreement is obtained. So far simulation predicts an extended dynamic stability range of a Néel wall, corresponding to steady state approximation /4/, compared to an HBL-wall structure whereas the three fold values for dynamic instability of $(0,0/0)^{+}$ and $(0,4/2)$ domains are roughly identical (Fig.2 and 3). The reason for observed HBL-nucleation at minor values of $H_{p,\text{max}}$ in experiment has not been conceived up till now.

Simulations of the Néel wall yield higher maximum velocities $v_{\text{B},\text{nw}}^{+}$ characterized by HBL-nucleation, for movements perpendicular to m.a. as predicted by the theory of Schlömann /13/, where the experiment shows contradictory results. Possible reasons for the quantitative discrepancies concerning HBL-nucleation might be referred to the fact that Bloch line nucleation is initialized right at the film surface in orthorhombic garnets (Fig.5a.), but more underneath the surface for films without inplane anisotropy (Fig.5b.). The computed film thickness dependence of $v_{\text{B},\text{nw}}^{+}$ exhibits a remarkable decrease with increasing $H_{o}/(A_{1}A_{2})$ ratio, thus contradicting the experimental results of Breed /14/.

Own preliminary experiments support our numerical results. The average wall mobility of the Néel wall agrees quite well with the experimental value for $(0,0/0)^{+}$ bubbles. A large overshoot of approx. 100 % is observed in the HBL-structure simulation, leading to a much higher average mobility compared to experimental data for the wall state $(0,4/2)$.

REFERENCES

/1/ Research Report No. 6, 7, and 8 of the Project No. 423-7291-NT-2576

German Ministry of Research and Technology "BMFT"

/2/ The new notation relates to the former used ones in /1, 4, 8/ as follows:

$0,0/0)^{+}$ --- $0,2/1)^{-}$ --- $0,4/2$ --- $S = 0E$

