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Résumé - Bien que le problème électrostatique d'un cône conducteur rigide 
et d'une contre-électrode plane n'ait jamais été résolu exactement, nous 
montrons, en accordant les solutions à courte et à grande distance, que le 
champ au voisinage de l'apex est donné approximativement par : 

Il est aussi démontré que la solution de Taylor au problème électrostatique 
d'un cône rigide et d'une contre-électrode plane ne satisfait pas l'équation 
de Laplace pour les configurations réelles d'électrodes utilisées dans les 
sources d'ions à métal liquide et dans d'autres expériences sur des fluides 
conducteurs soumis à des champs électrostatiques. 

Abstract - Although the electrostatic problem of a rigid conducting cone and 
inf inite planar counter-electrode has never been solved exactly, we show, by 
matching the near and far solutions, that the f ield in the vic inity of the 
apex i s approximately given by 

It i s also expl ic i t ly demonstrated that Taylor's solution to the electrostatic 
problem of a rigid cone and non-planar counter-electrode model does not sat
isfy the Laplace Equation for the actual electrode configurations used in 
field emission liquid metal ion sources and other experiments on electrosta
t i ca l ly stressed conducting f luids . 

I . INTRODUCTION 

in this paper we present a solution of the electrostatic problem of a conducting cone 
and infinite planar counter-electrode. Although this conical configuration was as
sumed by Taylor /l/ and others /2,3/ to be the equilibrium shape of a conducting fluid 
in an electric field prior to and at onset of instability, the difficulty in solving 
Laplace's equation for the exact geometry and other constraints /4/, prompted Taylor 
to choose a different model for the counter-electrode. Using the conical shape for 
the electrostatically stressed fluid, Taylor invoked dimensionality arguments to show 
that the only field distribution consistent with a cone that satisfied his form of 
the Laplace condition is given by 

(1) 

where notation is defined in Ref. 1. It then follows that the counter-electrode 
necessary to produce this field is 

(2) 
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The non-planar na ture  of t h i s  e lec t rode  is  c l e a r l y  i l l u s t r a t e d  i n  Figure l a  which is 
a reproduction of Taylor 's  apparatus /l/ designed t o  "produce" t h e  conical  f i e l d  
given by Eq. (1). Figure l b  i s  a schematic of these  electrodes;  no ta t ion  f o r  t h e  
ana lys i s  t o  be described i s  given i n  t h e  f igure.  Also i l l u s t r a t e d  is  Taylor 's  pro- 
posed conical  shape of t h e  conducting f l u i d  sur face  j u s t  p r i o r  t o  t h e  onset  of in- 
s t a b i l i t y .  It  is  important t o  note  t h a t  i n  t h e  experimental procedure used by 
Taylor, he f i l l e d  t h e  t o p  of t h e  t runcated cone, denoted by C, with p rec i se ly  t h e  
volume of f l u i d  necessary t o  complete t h e  apex of t h e  cone. This was done t o  ensure 
t h a t  t h e r e  would be exac t ly  t h e  con ica l  shape t o  s a t i s f y  Eqs. ( 1 )  and ( 2 ) .  

We now demonstrate t h a t  Taylor 's  so lu t ion  t o  t h e  e l e c t r o s t a t i c  problem of a r i g i d  
conea>d idea l ized  counter-electrode does not s a t i s f y  t h e  Laplace equation f o r t h e  
ac tua l  experimental configurat ions f o r  f i e l d  emission l i q u i d  metal ion  sources / S /  
and o t h e r  experiments on e l e c t r o s t a t i c a l l y  s t r e s s e d  conducting f l u i d s  / 6 / .  The 
geometry common t o  these  experiments cons i s t s  of  e s s e n t i a l l y  an i n f i n i t e  planar- 
counter-electrode centered above t h e  source. This i s  i l l u s t r a t e d  schematically i n  
Fig.  2a, t h e  corresponding i d e a l i z a t i o n  a s  a r i g i d  cone is  shown i n  Fig.  2b. A 
q u a l i t a t i v e  p l o t  of t h e  p o t e n t i a l  d i s t r i b u t i o n  is  a l s o  depicted i n  Fig.  2b. Although 
Taylor ' s  so lu t ion ,  given by Eq .  (1) (hereaf te r  denoted b.y v T ( ~ , 8 )  E vT) s a t i s f i e s  
theDir ichletboundary condit ion V = 0 ,  on the  idea l ized  counter-electrode, t h e  
p o t e n t i a l  vT never s a t i s f i e s  t h i s  boundary condition on a p1 nar counter-electrode. 
Since t h e  constant  i n  ~ q .  (1) i n  easily shown t o  be - V ~ / R ~ ? ~ ,  it follows from the  
app l ica t ion  of the  boundary condition on t h e  p lanar  electrode t h a t  vT = V. [l - 
p112   COS^) ~ e c ~ / ~ 8 l  should be equal t o  zero f o r  a l l  8. However' the  bracket  term 
cannot be zero s ince  

is never equal  t o  sec-1/28 f o r  any value of  8. I n  E q .  ( 3 )  E and K a r e  t h e  e l l i p t i c  
i n t e g r a l s  of t h e  1 s t  and 2nd kind respect ively / 7 / .  

PLANAR COUNTER -ELECTRODE 
R. l 

Fig. l a .  Diagram of Taylor 's  experimental 
apparatus /l/. The sur face  A is  t h e  
t runcated cone of half-angle 4 9 . 3 " ;  t h e  
counter-electrode is t h e  metal sur face  B. 

lb .  .Schematic comparison of t h e  
Taylor e lec t rode  configurat ion and t h e  
planar  counter-electrode model. 

COUNTER-ELECTRODE 

v,o / 
t -  

FIELD LINES 

Fig. 2a. Schematic of t h e  e lec t rode  con- 
f igura t ion  i n  a t y p i c a l  LMIS. 

2b. The cone and planar  e lec t rode  
model of an LMIS. 



11. SOLUTION OF LAPLACE'S EQUATION FOR THE CONE AND INFINITE PLANE 
In t h i s  sec t ion  we presen t  a so lu t ion  f o r  the e l e c t r o s t a t i c  problem of an i n f i n i t e  
cone and planar  counter-electrode and show t h a t  t h e  r e s u l t i n g  f i e l d s  near t h e  apex 
d i f f e r  s i g n i f i c a n t l y ,  q u a l i t a t i v e l y  and q u a n t i t a t i v e l y ,  from Taylor ' s  so lu t ion  given 
by Eq. (1). 

Consider f i r s t  t h e  general  so lu t ion  of Laplace's equation i n  spher ica l  coordinates 
and with azimuthal symmetry, 

subject  t o  t h e  boundary condit ions V = 0 on t h e  counter-electrode and V = V0 on t h e  
cone. The model and coordinates a r e  defined i n  Fig.  3 .  The general  so lu t ion  i s  

V ( R , B )  = C ( A ~ R ~  + B ~ R - ~ - ~ ) P ~ ( c o s ~ )  ( 5 )  
v 

1 
with Rev > - -2. / 8 / .  

Since t h e  electrodes do not correspond t o  any of t h e  coordinate surfaces i n  t h e  known 
separable  coordinate systems, t h e r e  i s  no closed form so lu t ion  f o r  t h e  p o t e n t i a l  
V(R,8). However, t h e  spher ica l  coordinate  system was selected i n  t h i s  problem because 
t h e  coordinate sur face  8 = corresponds t o  t h e  sur face  of t h e  cone. 

Fig. 3. schematic diagram defining t h e  notat ion and domains i n  t h e  so lu t ion  of Eq. ( 4 ) .  

To approximate t h e  so lu t ion  we use t h e  
PLANAR COUNTER-ELECTRODE following procedure: 

TENTI*~ 1. Solve Laplace's equation exact ly i n  
t h e  i n s i d e  domain o r  t h e  near region 
of t h e  apex of t h e  cone ( s e e  Fig. 3 ) .  

2. Approximate t h e  so lu t ion  i n  t h e  outs ide 
domain with t h e  exact  solut ion of t h e  

CONTACTE R 
"contacted" cone problem, which i s  de- 
scr ibed below. 

3. Match t h e  two so lu t ions  on t h e  bound- 
a ry  surface between t h e  two regions t o  
determine t h e  expansion c o e f f i c i e n t s  
f o r  t h e  so lu t ion  i n  t h e  i n s i d e  domain. 

1 ^ ^ ^  I - I 
- - v  

d d 

/ 
,F- 

/ CONE 

i 

Fig. 4a. A schematic i l l u s t r a t i o n  of 
t h e  "contacted" cone model. 

4b. A schematic diagram i l l u s -  
t r a t i n g  t h e  boundary matching pro- 
cedure. 

In  t h e  ins ide  o r  near region, where t h e  
i n f i n i t e  s e r i e s  i n  inverse powers of R 
must vanish, t h e  exact so lu t ion  is  

where R& , which denotes t h e  "boundary 
surface,"  i s  defined i n  Fig. 4a. The 
V s ' s  a r e  so lu t ions  of t h e  equation 

Pvs(cos80) = 0 f o r  80 = n - a , (71 

and define t h e  zeros of t h e  Legendre func- 
t ions .  Pvsls,  cf  non-integral index /g/ .  
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This condition on the Vs's ensures that the boundary condition V = V0 is satisfied 
on the cone. In the outside or far regions, that is R > R& , the solution V(R.8) 
is approximated by the exact potential for a "contacted" cone, which is schematically 
shown in Figure 4b. As seen in the figure, the contacted cone is obtained by dis- 
placing the actual cone an upward distance R0 sec along the edge of the cone. It is 
assumed that the two "contacted" electrodes are separated by an infinitesimally thin 
insulating layer. The resulting configuration of electrodes in just a special case 
of the biconical antenna /10/ where the upper "cone" has been folded out with a half- 
angle of ~/2. 

The exact solution to this problem, which is independent of R, is given by 

with prime denoting the "contacted" cone coordinates and other symbols are defined in 
Fig. 4a. It is evident that for R'>>RO , this solution is a good approximation for 
the separated cone problem. Therefore, using the following relations between the co- 
ordinates for the contacted and separated cones 

R' - R C O S ~ + R O  
tan - = 2 Rsine + Rotana (9a) 

and 

we obtain 
- Rcose + R. 

v'( B') = V(R.0) = Voln 
Rsine + Rotancl ]An [t* g) 

(10) 

To find the expansion coefficients in the solution for the near region, we match Eqs. 
(6) and (10) on the "boundary surface" defined by R' = R& . The matching prodecure 
is done on different "boundaries" (i.e., different values of R&) and with different 
numbers of sample points until the coefficients are stable to within 0.1%. This pro- 
cedure is illustrated schematically, with sample points, in Fig. 4b. The resulting 
stable solution is 

With this solution, the boundary conditions are satisfied exactly on the cone, and 
are stable to within 0.1% on the infinite planar counter-electrode. 

The field components corresponding to the potential given by Eq. (11) are 

Ee = -'p) R 37, = -[$)[0.46029 P-o-~(cos~)-cos p~.~(cOse) 
sine [k--O.q . 

In order to compare with Taylor's results, we list below the corresponding fields 
for the potential, given by Eq. (l): 

- - - =  - 0.5[$-)[ P-o.~(cos~)-cos Po.~(cos~) -0.5 
R a sine IM 



111. COMPARISON OF THE FIELDS AND CRITICAL VOLTAGE 

It is particularly important to note that although the first two terms of the solu- 
tion for the planar counter-electrode model  LE^. (11)) have the same functional form 
as the Taylor solution for the curved counter-electrode (Eq. (l)), the coefficients 
of the second terms differ by about 10%. Furthermore the higher order terms in Eq. 
(11) lead to a different R-dependence and make significant contributions especially 
along the axis of the cone. The resulting field dependence is not simply R - ~ / ~  and 
this leads to both qualitative and quantitative differences in the two field distri- 
butions. This is illustrated first in Figures 5a and b which are numerical plots of 
the potential and field distributions for a cone with the Taylor half-angle a =  49.3". 
These have been obtained using Eqs.(l2) and (13) for the planar electrode and Taylor 
model respectively. Most significant is the more divergent behavior of the field 
lines near the apex of the cone in the Taylor model. Thus apart from the question of 
whether the conical model is even a correct description of an LMIS /4,10/ the use or 
application of the Taylor fields in the calculations of, say space charge or ion tra- 
jectories in an LMIS, will lead to results which are inconsistent with those obtained 
from the model with a planar counter-electrode. 

In Tables I and I1 we compare quantitively 
the fields, for the planar and Taylor 
models, along the exterior cone axis and 

KO the surface of the cone respectively. 
Distances are normalized in terms of the 
apex-extractor electrode distance Rg , 
and the fields expressed in units of 
(VO/~O). Along the direction of the axis 
the component E must, by symmetry, be 
zero, and only the radial components of 
the fields are compared. Similarly on the 
surface of the cone, defined by 80 =V-a, 
the radial component of the field is zero, 

R ['h eOsed' so that only the 8-component is compared 
in Table 11. In both cases the calculated 
fields differ from each other by about 
10-25% over the range considered. These 
differences are further manifested in the 
calculation of the critical breakdown 
voltages, which can be experimentally 
determined. 

I v-" \ 
b Using the Taylor equilibrium condition 

- EQUIPOTENTIALS 
/l/ 

-----. FIELD LINES 

R 

Fig. 5. Numerical plots of the po- and ~ q .  (l), in the form, 
tential and field distribution for 

a. Taylor cone with planar V = Vo[l - Pl/2(~os8) , I (15) 
counter-electrode and 

b. Taylor cone and idealized 
non-planar counter-electrode given 
respectively by Eqs. (11) and (12) 
and Eqs. (1) and (13). 

the critical voltage for breakdown in the 

Taylor model, is given by 

The corresponding expression for the planar electrode model, obtained using Eqs. (141 
and (11) is 
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Table I. Comparison of Fields on Axis 

Table 11. Comparison of Fields on Surface of the Cone 

We first use Eqs. (16) and (171 for the case of transformer oil, which was studied 
experimentally by Taylor /l/. The results are given in Table 111. We note that in 

Table 111. Comparison of the Critical Voltages for Breakdown 

Taylor's model, the critical voltage is constant over the surface of the cone. By 
contrast, our calculated potential distribution predicts a position dependent break- 
down voltage, which is in agreement with the local nature of the observed instabil- 
ities in both LMIS /12/ and other experiments on electrostatically stressed fluids 
/6/ including Taylor's own observations /l/. A though we obtain remarkably good 
agreement with Taylor's experimental value of V$'exp = 7.2-7.6 X 103 volts, the agree 
ment is probably more fortuitous than real. We have also calculated the critical 
voltages for liquid gold and gallium in the two models and again find differences of 
about 10-25% along the surface of the cone. However, both sets of the calculated 
values are about 2-3 times the experimental values /3,13/. This may be attributable 
to the fact that actual shape of the liquid metal source is not conical but probably 
cuspidal or cuspidal-like /12/, leading to higher fields and consequently lower break- 
down voltages near the apex. Calculations of the critical breakdown voltages for 
the cuspidal model of an LMIS are now in progress. It is important to stress that 
the Taylor cone model and his resultant condition for equilibrium (see Eq. (1411 pre- 
dicts a constant value of the critical voltage over the entire surface of the cone. 
i.e., global. This is in disagreement with experimental observations discussed 
earlier as well as a recent theoretical analysis of the stability of electrostatically 
stressed conducting fluids /14/ which clearly demonstrates that the onset of insta- 
bility (i.e., breakdown) is a local phenomenon. 



In conclusion, the significance of the electrostatic solution we have obtained for the 
conducting cone with an infinite planar counter-electrode can be summarized as 
follows: 

1. It is never equivalent to Taylor's solution for the idealized non-planar 
electrode geometry. 

2. The field dependence, in contrast to Taylor's model, is not simply R - ~ / ~  
and consequently is incompatible with the Taylor stress condition for 
equilibrium. 
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