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POTENTIAL DISTRIBUTION IN METAL-VACUUM-METAL PLANAR BARRIERS CONTAINING
SPHERICAL PROTRUSIONS OR INCLUSIONS *

A.A. Lucas, J.P. Vigneron, J. Bomo*, P.H. Cutler*, T.E. Feuchtwang*,
R.H. Good, Jr* and Z. Huang*®

Départment de Physique, F.N.D.P., 81, rue de Bruxelles, 5000 Namur,
Belgium

*Physics Department, The Pemnsylvania State University, University Park,
Pennsylvania 16802, U.S.A.

Résumé - On présente une méthode exacte pour le calcul rapide a) de la dis-
tribution de potentiel &lectrostatique régnant entre deux électrodes planes
parall&les contenant une protrusion sphérique ou insertion sphérique con-
ductrice et soumises 3 une différence de potentiel et b) du potentiel image
classique ressenti par un électron traversant la jonction plano-sphérique.

Abstract - We present an exact method for the fast computation of a) the
electrostatic potential distribution between two biased planar, parallel
electrodes containing a spherical protrusion or an isolated conducting,
spherical insertion and b) the classical image charge potential experienced
by an electron erossing the plano-spherical junction.

I - INTRODUCTION

Interest in tunneling through non planar MVM junctions has recently been enhanced
by the advent of the Scanning Tunneling Microscope (STM)!.

Theoretical models?:3s* have been constructed aiming at a better understanding of
the observed spatial resolution of the microscope.

Prior to this, theoretical work ® had been concerned with nonplanar tunneling in
metal whisker diodes which have a geometry similar to STM and which were instrumen-
tal in establishing the recently defined velocity of 1ight®. Also, tunneling through
curved interfaces occurs in electroluminescent MOM junctions’ where the Tuminescence
is enhanced by roughness.

In discussing the tunneling in STM, it may be important to use realistic models of
the junctions®. In one such model the tip surface is a planar conductor provided
with a hemispherical protrusion which models an atomic cluster through which the
tunnel current is believed to pass in the actual device. The actual imper-

fections are not expected to have such regular shapes but this model permits @
theoretical analysis and is expected to give a first approximation to actual
experimental conditions. The counter electrode representing the surface to be exami-
ned by STM is here a flat metal conductor separated from the tip by a vacuum gap.

In this paper we report on methods of solving two problems :
1) Determination of the three-dimensional potential barrier due to the external bias
field. That is, given the potentials at the two electrodes, determine the poten-
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tial distribution in the space between them.

2) Determination of the classical image charge potential. That is, with the electro-
des grounded and a point charge in the space between them, calculate the poten-
tial energy of the system as a function of the position of the point charge.

The sum of these two potential barriers represents the classical vacuum potential
barrier across which the electrons in a STM tunnel.

The solution for the static potential obtained here could also be derived by solving
Maxwell's equations and boundary conditions for the corresponding quasi static pro-
blem in which the metal electrodes are represented by a local, frequency-dependent
dielectric function e(w). Such an approach, which would also give the resonant modes
of the MVM junction, has recently been adopted by Ruppin® (who used a general method
due to Berreman'®) for a single planar electrode with one hemispherical bump, in the
context of Surface Enhanced Raman Scattering.

As expected, for realistic values of the geometrical Tength parameters, the tunneling
barrier exhibits strong deviations from the planar MVM barrier of the same materials.
In particular, substantial narrowing of the barrier along the axial direction of the
tip and large barrier asymmetry with respect to bias reversal are obtained. Graphical
representation of these numerical results will be presented and discussed.

IT - STATIC BIAS POTENTIAL DISTRIBUTION

We will treat the general case of fig. 2 which covers all situations of partially
protruding spheres (a < R) or isolated spherical inclusions (a > R) such as found
in roughened electroluminescent MOM junctions.

The first thing we do is to reflect in the plane z=0 both the vacuum gap and the
sphere of fig, 2, as shown in fig, 3. It is easy to convince oneself that the poten-
tial distribution in the upper half (z > 0) of the double gap coincides, by symme-
try, with the potential of the actual junction of fig. 2.

The potential at ¥ would be known if we knew the induced surface charge density o
on all surfaces. In fact, the knowledge of the surface charge density o(¥y) on the
upper sphere will suffice if we observe that

i) by»symmetry, the surface charge density on the lower sphere is identical to
o(r_ ) and

i) emp?oying the method of images to satisfy the boundary conditions, the surface
charge density on the planar conductors at d and -d can be replaced by an in-
finite series of spherical charge distributions obtained by imaging the two
spheres in the twin mirrors at d and -d.

Thus the problem is entirely reduced to calculating the potential due to a Tinear array
of identical spheres, clustered by pairs, and all carrying the same charge density
o(rg) as the real sphere Sg. It is clear that if we obtain the potential at ¥ due

.to So alone, we can obtain the total potential by adding up the image sphere ‘con-
tributions through suitable translations of the z coordinate. Let us write the

axially symmetric total potential at ¥ = (p,z) as

V(p,z) = Vo F+ V'(p,2) (1)

where we have separated the simple planar gap contribution V,z/d which must be recc-
vered for asymptotically 1arge p. The perturbation V' satisfies the boundary condi-

tions
V' =0 for z =0 (a)
vVt =0 forz=xd (b) (2)

)

V' o= - ng on s, {c)
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Let us expand o in Legendre polynomials :
N [=4)

o(r 251 A, Py(cos 60) (3)

where the £ = 0 term is excluded for charge neutrality. The potential due to the

real sphere is given by

o) =

0
VL (F) = R° J do —f—g)— (4)
So ra—rol

where ¥_ is the position of point P with respect to the center of the sphere S
Insert1ﬁg the generating function of the P's

o k
1
T = § E+1 P (cosa) (5)
a o ~a

and using the addition theorem of spherical harmonics

P, (COSG) = il gk Y“**(e o) YNG,0) (6)
k 2kl Z o K 0’ "o/ k'7?
in (4) gives
2 R 1 om i
= 4qR Q/Em A,Q, e —Y“E:_T Yk(e,¢) JS on PQ,(COSGO) Yk (90,¢0) .
a )

Orthogonality of the Yr‘s reduces Vé to

o z
(- 1 a
Vo - § By +1 PQ( )
2=1 5= 2+22
2,..2 LR

(p7+z,)

where z,=2-a, and B are new unknown coefficients, proportional to A .

Now we can add contributions to the potential from all spheres centered at z, =

+ (a+2nd), n = 1,2, . The final result is
' - s
VT = E By Felesz) C®
b _ A+l
® 7
Fosz) = & (ol 4 (zondea)d by [ ]
A de + (z-2nd-a)2
a4l
A
= (1% 1% + (z+2nd+a)? ] PQ[ z+2nd+a J (9)

4p2 + (z+2nd+a)2
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It is easy to verify that Fy is antisymmetric (change n into -n)
F,Q,(p’-z) = - Fg\(‘p’z) (10)

which guarantees the bounwary condition (3-a). By virtue of the image construction,
F, also satisfies {the nth term cancels the -{n+l)th term) Fg(p,+d) = 0 which
guarantees the boundary condition (3-b). Finally, the unknown coefficients By are
determined by imposing the Tast condition (3-c) :

© v
0
I B, F(p,2) = - — 2z (11)
01 28 d
for a-R < z < a+R,
(12)
p2 - 2 z2

The By coefficient for 2 up to an upper multipolar Timit L can be found as the solu-
tions of a set of L 1linear equations obtained by imposing the condition (11) at L
distinct values of z suitably chosen in the indicated interval. However 1t is more
accurate to determine the first L coefficients by least squareadjusting®! them to
a much larger number N >> L of equations (11) written for N distinct values of z.

For a hemispherical protrusion (a = 0), the solution (8) (9) reduces to

o

V(F) = B Fylen) (13)

o)

2 2 2nd
Folos2) = E [p“ + (z+2nd) Pog 1 [ z+2n (14)

s d z+2nd)

and, by symmetry, involves only odd multipoles. It turns out that the convergence
of the n-summation over the images in (14) is very fast (n < 10 suffices to get
the Fg with 10-5 accuracy). Regarding the multipole expansion, taking 2 < 3 proves
sufficient to determine the Cy's with 1072 accuracy. A few equipotentials are il-
Tustrated in fig. 4. The potential values along the axial z direction (p = 0) are
plotted in fig. 5. The characteristic buldging out of the potential, as compared
to the linear behaviour of a planar MVM junction,is clearly seen. It reflects the
enhancement of the electric field at the sphere apex.

IIT - ELECTRON MULTIPLE IMAGE

The construction of the self image potential of the tunneling electron is straight-
forward when using an appropriate sequence of multiple images. We illustrate the
principle of the method for the case of a hemispherical protrusion which, as is
well known, presents the simplifying feature of requiring only three images in the
non planar electrode (fig. 6).

Let us denote (q,pq,zq) the charge and position of the tunneling part1c1e This has
exactly three images in the Tower electrodes given by (q', Pgs 2 .) (-q ,pql,-zq-)
and (- 9:pg>-Z ) where

q' = - q-§~ and
) (15)
] ) 2
M R
Zq. pq rq
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The source charge q and its three images in the Tower electrode are considered as
the first generation of an infinite set of generations constructed as shown in fig.
6. The second generation, also having 4 charges, is simply the images in the plane
z = d of the previous charges. Each of the new charges in the upper electrode gives
rise to exactly three new image charges in the lower electrode and so forth. Thus,
the 2nth and (2n-1)th generations have the same number of charges, namely 4.3n-1

(n =1,2,...,2),

Once the image charge array qj has been constructed, the self image potential eneray
of the source charge q is written as

9

> (16)
.|

W=+ %~q P
! i

|7
where the factor 1/2 takes account of the induced nature of the images'Z.

Each charge generation being neutral, the potential calculated from (16) converges
very fast : 10 generations suffice to get W with an accuracy of 10-5. One typical
result is illustrated in fig. 7.for p=0. The image potential energy is also slightly
asymmetrical as expected and, of course, diverges at z = R and z = d. If desired,
this can be easily corrected in the usual way by withdrawing the image planes
sJightly inside the conductors. These image potential values must be added to the
static ?2as potential 6f fig. 4 to construct the tunnel barrier through the pro-
trusion®*.

IV - CONCLUSION

The most important result of the present calculations is to demonstrate the dominant
role of the classical multiple image potential in determining the shape of the
vacuum barrier in the STW junction where the static bias potentials are on the

order of 10 meV. Consequently, it is essential to recognize the nonseparability of
this barrier which precludes the use of a one-dimensional transmission coefficient
for tunneling calculations in a realistic model of the STM. A more complete discus-
sion of the calculated barriers and the significance in three-dimensional tunneling
will be published elsewhere,
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v Figure 1
Fig. 1 Model planar MVM junction with
0 hemispherical protrusion.
4
d v,
Fig. 2 a
Figure 2
- 0 4]
Model planar MVM junction with

spherical inclusion,

Figure 3

Antisymmetrical duplication of the junction of Fig. 2
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Figure 4
Equipotential Tines in the MVM junction biased to 5 V.

Figure 5

Potential distributions in the vacuum gap of a junction biased to 5 V,
a, b, ¢ and d correspond to a width of 5, 10, 15 and 20 & respectively.
The hemispherical protrusion has a radius of 10 R.
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Figure 6 - Iteration method to generate the set of multiple images of the object
charge q in the vacuum gap of a junction with hemispherical protrusion.
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Figure 7 - Self-image potential along the symmetry axis for a charge in a junction
of 30 R width having a hemispherical protrusion of 10 &,



