PROPERTIES OF THE PLANETARY MATERIALS
He, SiO2, AND N2 AT DYNAMIC HIGH PRESSURES
AND TEMPERATURES
W. Nellis, N. Holmes, A. Mitchell, M. Van Thiel, H. Radousky, D. Hamilton,
S. Henning

To cite this version:

W. Nellis, N. Holmes, A. Mitchell, M. Van Thiel, H. Radousky, et al.. PROPERTIES OF
THE PLANETARY MATERIALS He, SiO2, AND N2 AT DYNAMIC HIGH PRESSURES
AND TEMPERATURES. Journal de Physique Colloques, 1984, 45 (C8), pp.C8-105-C8-107.
<10.1051/jphyscol:1984820>. <jpa-00224318>

HAL Id: jpa-00224318
https://hal.archives-ouvertes.fr/jpa-00224318
Submitted on 1 Jan 1984

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
PROPERTIES OF THE PLANETARY MATERIALS HE, SiO\textsubscript{2}, AND N\textsubscript{2} AT DYNAMIC HIGH PRESSURES AND TEMPERATURES

University of California, Lawrence Livermore National Laboratory, Livermore, CA 94550, U.S.A.

*University of Lund, Sweden

Résumé - On a mesuré en régime dynamique les propriétés physiques à haute pression et haute température de trois matériaux que l'on pense être des constituants des planètes externes.

Abstract - Physical properties have been measured dynamically at relevant high pressures and temperatures for three materials thought to constitute the outer planets.

The first shock-compression data for liquid He were measured. Using a two-stage light-gas gun, liquid He at 4.3 K and 1 atm was shocked in the range 1.2-16 GPa (12-160 kbar) and double-shocked to 56 GPa. The equation-of-state data are in good agreement with the theory of Ross and Young who used liquid perturbation theory to determine an effective interatomic potential. The calculated temperatures, 1200K at 16 GPa and 21000K at 56 GPa, are comparable to temperatures in the envelopes of Jupiter and Saturn.

SiO\textsubscript{2} aerogel is a transparent glass structure with a pore size of 10 nm and a density of 0.13 g/cm3, 20-fold expanded relative to the density of α-quartz. We have obtained Hugoniot data for this material to 15 GPa and 7-fold compression, which is still a 3-fold volume expansion relative to α-quartz. A shock temperature of 10,800K was measured pyrometrically at 6.7 GPa. The data2 are shown in Fig. 1, plotted with the results for crystalline α-quartz.3 Equation-of-state data for this material may lead to an understanding of cratering phenomena induced by hypervelocity impact, both because SiO\textsubscript{2} is an abundant geological material and because aerogel can be used to diagnose states in other minerals releasing from 100 GPa shock pressures.

Fig. 1 - Equation-of-state and shock temperature data for shocked SiO\textsubscript{2} aerogel, initially 20-fold expanded relative to α-quartz. Also shown is the Hugoniot of α-quartz (Ref. 3).
New equation-of-state data were measured for liquid N\textsubscript{2} single- and double-shocked to pressures up to 100 GPa, compressions up to 4-fold over initial liquid density, and internal energies up to 1 MJ/mole4. A new single-shock point at 80 GPa shows that the softening in the nitrogen Hugoniot at 30 GPa is followed by a stiffening at 50 GPa---a shape similar to Hugoniots of materials undergoing phase transitions. The data are shown in Fig. 2, plotted with previous results for nitrogen5,6 and carbon monoxide. Three double-shock data points lie above the principal Hugoniot in pressure-volume space. This observation is the first in condensed matter of double-shock pressure greater than single-shock pressure at the same volume, and implies that pressure increases with decreasing temperature at constant volume. These anomalous double-shock points are caused by a continuous phase transition. By comparing the principal Hugoniots of liquid N\textsubscript{2} and isoelectronic CO\textsubscript{7}, the phase transition is identified as molecular dissociation. Preliminary data show that nitrogen has an electrical conductivity of 10 (ohm-cm)-1 at 40 GPa shock pressure, a significant increase from its initial insulating state. Estimated shock temperatures of > 6,000 K8 indicate nitrogen is in the fluid phase in these experiments. The temperatures are comparable to those predicted for the interiors of Uranus and Neptune. The dissociation of shocked liquid N\textsubscript{2} and NH\textsubscript{3} suggest that, if nitrogen exists in the outer planets, it exists in more phases than simply NH\textsubscript{3}.

![Fig. 2 - Hugoniots for liquid N\textsubscript{2} (triangle at 80 GPa is this work, solid circles from Ref. 6, squares from Ref. 5) and CO (open circles from Ref. 7). The dash-dot curve is extrapolation of low-pressure common curve for both N\textsubscript{2} and CO.](image)

ACKNOWLEDGEMENT

Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract #W-7405-Eng-48 with partial support from the U.S. National Aeronautics & Space Administration under Contract 83-033.
REFERENCES

5) ZUBAREV, V. N. and TELEGIN, G. S., Sov. Phys. Dokl. 7 (1962) 34