N
N

N

HAL

open science

COVARIANT EXTENSION OF THE WIGNER
TRANSFORMATION TO NON-ABELIAN
YANG-MILLS SYMMETRIES FOR A VLASOV
EQUATION APPROACH TO THE QUARK-GLUON
PLASMA
J. Winter

» To cite this version:

J. Winter. COVARIANT EXTENSION OF THE WIGNER TRANSFORMATION TO NON-
ABELIAN YANG-MILLS SYMMETRIES FOR A VLASOV EQUATION APPROACH TO THE
QUARK-GLUON PLASMA. Journal de Physique Colloques, 1984, 45 (C6), pp.C6-53-C6-66.

10.1051 /jphyscol:1984607 . jpa-00224208

HAL Id: jpa-00224208
https://hal.science/jpa-00224208
Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/jpa-00224208
https://hal.archives-ouvertes.fr

JOURNAL DE PHYSIQUE
Colloque C6, supplément au n°6, Tome 45, juin 1984 page C6-53
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YANG-MILLS SYMMETRIES FOR A VLASOV EQUATION APPROACH TO THE
QUARK-GLUON PLASMA

J. Winter

Sektion Physik der Universitit Minchen, Theresienstr. 37, D-8000 Minchen 2,
F.R.G.

Résumé — La transformation de Wigner est généralisée comme une opération
covariante par rapport 3 une symétrie de jauge locale. L'application 3

un champ de matiére quantique de Klein-Gordon en présence d'um champ
classique self-consistent de Yang-Mills conduit 3 une extension correspon-—
dante de 1'équation de Vlasov dans la limite classique et de ses correc-
tions quantiques dont les principales corrections s'avérent &tre des
commutateurs caractéristiques dans les théories non-Ab&liennes. Dans
1'application & la chromodynamique on obtient un modéle semi-classique pour
un plasma de quarks et gluons sans spin, ce qui devrait &tre utile au deld
de la transition de déconfinement.

Abstract - The Wigner transformation is generalized as a covariant
——————y— . . .
operation with respect to a local gauge symmetry. The application to a
quantum Klein-Gordon matter-field in the presence of the non-quantized
self-consistent Yang-Mills field leads to a corresponding extension of
the Vlasov equation, in the classical limit, and moreover to its quantum
corrections, the leading ones of which are found to be commutator terms,
characteristic for non-Abelian theories, In the application to chromo-
dynamics a semiclassical model for a plasma of spinless quarks and
gluons is obtained, which should be of use beyond the deconfinement
transition.

Since its introduction to describe the interaction of quarks in
terms of a local gauge theory, gquantum chromodynamics has not
only been applied to the few-quark problem of elementary particle
physics, but also to extended strongly interacting matter. Where-
as current research is mainly concentrated on quark-gluon thermo-
dynamics based on lattice QCD [1] to study in particular the de-
confinement transition, for situations beyond this transition,

at least, an alternative of a first approach might seem temptina
which involves a simpler tool at the level of ordinary plasma
physics: generalized Vlasov and Maxwell equations coupling the
density matrix of quark matter and a classical mean gluon ("glue")
field. The generalized Maxwell equation of such a concept would
be just the non-guantized gluon field equation of QCD, with a
classical guark-current calculated from the Vlasov equation. The

vVlasov equation is established in the present work as the semi-
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classical 1limit of the guantum equation of motion for the quark
two-point function, in the presence of the classical gluon field.
In combination with the Wigner transformation of the egua-
tion of motion, such a limit is well known as a convenient
access to non-relativistic Vlasov equations from guantum me-
chanics [2]. In the following the concept of the Wigner transform
is generalized to relativistic non-Abelian local cauge theories,
the structure including chromodynamics as well as, in the Abelian
special case, electrodynamics, for which the standard Vlasov
equation is reproduced. To concentrate on essential treats in
the argumentation, with neglection of spin the matter (quark)
field is treated as a Klein-Gordon field.
The equation of motion for the two-point function or genera-
lized density matrix, defined as the expectation value of space-time
dependent Heisenberg field operators creating and annihilating a

a spinless particle

1+
N (x") = <Y, (x) VC,(X-» (1)

)

in the mean field (Hartree) approximation is obtained from the
equation for the free Klein-Gordon field by replacing ordinary
derivatives by covariant derivatives D implying the vector poten-
tial A of a classical Yang-Mills fieldf

(D. D*'- wmP) Mex = ¢ (2)

D! N!x = 4N i A o M) G

The gauge field 4 and all other script-type guantities in this
work are matrices in charge {(colour) space, the charge indices
being suppressed in the following. We use the standard conven-
tions of h=41 and of absorbing the coupling constant g by A .
The generalized Vlasov eguation will be derived from the essen-

tial anti-Hermitian part of the matrix eqgquation

5 (D" N -pDL D) =0 (2a)

the Hermitian part giving rise to a supplementary condition to

its solution. The derivativesA/Q:f'are defined in correspondence

*We choose the signature +++- of the metric
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with (3) with the convention of @f acting to the left.

In the further transformation of egs. (2) to the Wigner
representation in terms of midpoint X and momentum p it is
essential to conserve the local gauge-invariant form. For the
generalization of the standard Wioner transformation of a charge-
scalar density matrix to the charge-tensor &/ (1) this principle
means, that linear combinations of this guantity taken at different
coordinate pairs (x/,x"} should result in a guantity which in local
gauge transformations transforms as a local charge tensor at one
definite pointx ; i. e. the AQWH(YQWU must be refered to the
same local charge space at x by parallel transfer to x with
regard to both charge indices. The Wigner transform ofA/, or

charge-tensor Wigner function, has thus to be defined as

—'. }"'} 4 1 3 4
.Nme) :fdﬁf e e Llc(nx+i})/VY¥+%})x—z})(i{(r—z}'y) (4)

where U is a unitary charge operator of finite parallel transfer
[3]. The result of finite parallel transfer in general depends
on the particular path chosen between the two points, the natural
choice of which is the straight line, defining the matrix of
“linear" parallel transfer ?i{ used in (4), and which should be
generalized to the geodesic for a possible extension of the
theory to curved space.

On expressing /V(WJ") in the differential equation (2)
in terms of /V(np) by means of the inverted Wigner transformation,

due to the unitarity of U given by

Nex") = M{ (x‘,)()/?(x} 3 ul (x,x")
(Sa-4)

~

ip 3"
/V(Y;E) = (%if—)‘r [ Pf‘ N(Y;P) , Y = ;‘_(X'-*Y“), } = x'=x"

in order to end up with a kinetic equation for N{(xp) , the
problem of permuting the operations of covariant differentiation
and finite parallel transfer arises. For its treatment it is
convenient, instead of directly calculating the second derivatives
needed for (2), to evaluate them from the second covariant

differentials
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D'LM(X',X") - D/" DJ N(Y',Yn) 0(\("“0(\()”

/
(6a,b)

/\/(YI,X")D“?Z - A/(’(’,Y”J D;?Dy"fd\/'“no(xvu

To begin with the first differentials for purposes of demonstra-
tion, the covariant change of expression (5a) for AN(y,y") due

to a change dx/ of its first argument is obtained as
DN (eiw®) = (MU N UL + U, N (B U) + Uy (DN U ()

with ul z M((y'lx) ’MZ = U, {x,¥"). The gquantities AULLstand for

a variation of the matrix of linear parallel transfer between
two points x, and ¥, , defined as a local covariant vector with
regard to each of the two points and charge indices (covariant
bi-vector). For arbitrary changes of X, and X, this variation has
the form

AU, (4,%) = Uy (1dy, x4 dx,) = U

t("Z.’C’

(8)
+|A’ ’(L)MY u (YL.Y —;ul(yzlx,,)/l'/‘ (\'4) O(XAN

A’ in (7) means the specification of (8) to changes of the
arguments x = X = ;_(x’-rx“)) x,=x! or x,=x" ¥, = x due'a change
dx! with dx"=0 ; likewise, for a corresponding calculation
of D", A" is referred to changes dv". As is easily verified,
use of definition (8) in the first two terms of (7) goes along
with a differential DX'A?/ in the third term, which combines the
covariant derivative with regard to the midpoint x with the

usual derivative with regard to the relative coordinate §

DIN = (%D,mf}/«)/yow*’} (9)

; : . . ! "
in contrast to the covariant vector derivatives D,,v and D/A} D,.

in (9) is the covariant derivative of a second-rank tensor

~

DN

ol

1)

J(};/“/‘? + [/4,‘“),/‘7] . (10)
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For the second differentials needed for the right side of
eqs. (6}, a calculation similar to the preceding one leads to
the result

DN (e = (B2 U DN Uy + Uy V(87 UG) + Uy (DN ) U,
(41)
P2 (B UDV U + (U (DN IU + Uy (DM ia'u))

here the second variation ALM{ of the parallel transfer matrix
is defined by substituting Al for U; in (8) and the corresponding
conventions for A'* and A" . The left side of (6b) is likewise

given by (11) with replacement of A' and D,/

Nexix D" = (At =" DN = DI ) (111)

|&4

Dx”/\,/vi (;_D,’ },M)/VAX,‘“‘ (91

-

The variatious AU and AU of the matrix of finite parallel
transfer between two points must be determined as the total
effect of infinitesimal changes of all coordinates of the path
connecting these points. In the following we first derive a
general result for arbitrary variations of arbitrary connecting
paths which is then specified to linear parallel transfer
between two infinitesimally shifted end-points. - The treatment
is based on the differential equation [3] for the parallel

transfer matrix Lﬂtalong a curve 4 = t(s) , 028 4,-tw)=x4,f11)=x2)

H
([{%6 —A'/A(f(S)) M#(S))u{(s) = ¢ Mﬂ: d—é_ (42)

} ds !

S
ot
<
1

which solved for the initial condition

(13)
U, o) = J
yields lie(ﬁ:n) at ¢=1 . A formal explicit solution of (12)
in terms of the Feynman path ordering operator [4] is feasible
but not needed for the purpose of this work. Instead we have toin-

vestigate the variation of the solution due to infinitesimal
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variations §t of the curve ¢+ by means of Taylor expansion about
its unvaried value. As in (12) the left point of U (x,x,)

has been connected to the variable of the differential equation,
the variations most directly accessible to calculation should be

defined as covariant vectors with regard to the left point only,

it

SU ) = U, ~U, + i A SEWU, (14)

t - tt8t

UG = U, — U, A B U, (15)

Insertion of t{s) + §t(s) for t(s) in eq. (12), consistent
first-order expansion and subtraction of the zero~order equa-

tion immediately yields an equation for the ordinary variation

d (§¢1)

vl %f; WS IU, “16)

B o U) s (A

ds t+ 6t

Applying the operator 0/ds to both sides of the definition
(14) and using (16) and (12) one ends up with a linear-inhomo-
geneous differential eguation for §U which involves the field-

strength tensor F in its source term

BSU s = B () U GG BT 13
Fwz by b A+ i TAAL (18)

all terms beyond the first in F are contributed by the third
term of (14), the first term of (16) being cancelled. Eq. (17)
may be regarded as the Yang-Mills analogue of the equation
for the geodesic deviation in gravitation theory which may be
obtained by the same Taylor expansion technique [5] from the
geodesic equation corresponding to eq. (12). The greater
complexity of those equations lies in the fact that the varied
curve (geodesic) there is not independently given but determined
as solution of the equation itself together with its unit
tangential vector «, which takes the place of the matrix U of
finite parallel transfer in (12) and (17).
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For obtaining a similar equation for the second variation
§2UL the same substitution t=>t+§t and Taylor expansion are
now performed in eq. (17) which, after cancelling of first-order
guantities, yield as relation between second-order terms,including
a second variation §*t of the curve

L (5¢ IA )
2w, -su,) - BT T wre) au,

ds Lt Vd

£ v
A T e LR W ST

ds e (%

[ng v
* Iy (ut'S( “U,‘,)u LRI
the final differential equation obtained by applying iDlds to
(15), inserting (19) and using again (12) and (17) for the last
terms in {19) and {15) is

D T - "7
Rt =28, We iU
(20)

AP TOEAS L0 I VN IAG T 2 RVAN

with the covariant tensor derivative defined by (10). The same
result, through a lengthier calculation, is obtained by direct
second-order Taylor expansion in (12) with the substitution
t =t 5t 418 .
According to the definitions (14) and (15) of §U4 and
§*U , equations (17) and (20) have to be soclved with the
initial conditions

1 R 2 - - 2 M v a
§U(0) =i 4 () E¢" (0] §u, (o) A (A ) S0l 847 0)  (21ab)

The explicit solutions of the linear-inhomogeneous differential
equations are easily constructed by utilizing the matrix U (f)
for finding both a particular solution as well as the general
solution of the homogeneous eguation to be adapted to (21). As
turns out the solutions take their simplest form just if

accomplished as covariant bi-vectors AU and A*U in conformity
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with (8), which are ultimately needed in the application of

this work,

Aut(s) = 511({(5) - iué(s)/;,ﬂ (o) §4%(0) (22)

AU () = U = EU, 60 Ay (o) 5700
) (23a,b)

FPU, —Zi§ U, A () 8700 + Uy A, (9 A, (o) §£7(] §87(0)

The explicit solutions are successively obtained as

I

3 ~
AU, () = =i U0, de Ffe)wce) BEee) )

t

S"u{ (s) ué(s) ("‘/: d¢ (iizd Szu,f(C))—A,r (O)Ay (0} §+™ (o) vafa)>

or, inserting the right side of (20) and using (23b) and (24)

BU = = U [ del(F, (5267 P52 0) + (07, )& 067 58,

S ~ - (25)
"2_1(9;,1 chéf J de }; P! )g ;
the abbreviation
~ =yt (2¢)
£ 0 = U, (0 T, (66 U G)

~

together with a corresponding definition of D ¥ is applied, and
use of the unitarity of Ué has been made.

The general result (24) and (25) now allows the calculation
of the covariant differentials {(11) and(11') and the following
evaluation of the derivatives involved by the equation of motion

(2). This is achieved through the following steps:
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i} the insertions

tis) = X, s {x,-%,) , WE XpmX,
() = dwy + s {dy-dy,} | fu < dy,-dx, (2¥a-c)
8 = 0

in (24) and (25) specify these relations for the linear parallel
transfer yielding ATI{(xLxJ and A*W, according to the de-
finition (8);

ii) the specifications of AU, and £*U, with regard to variation
of the first or the second coordinate in the density matrix,

as discussed after eq. (8) and to be inserted to (11) and (11'),

are

1 ! ¥
Au(‘,:Aul(x’Y) d){:éd)” ) {

AU = AMZ(:(”,x)I 6"U,) = AUZ(x”,Y)

ldx=8dv' dy"=0 > ¢ dx=3da" (284)

in (28b), Alll(nXW is expressed by Alig(xﬂx) in order to
conveniently shift the midpoint ¥ to the right argument as the
starting point f{s! of the parallel transfer in all applications
of (24) - (26), as well as to isolate a factor bQ(Y,W7 at the
right of all terms in (11) and (11'), corresponding to a factor
U, I¥ix) at the left; 4*U is treated similarly,
iii) inserting (28) to (11) and (11'), evaluating from these
differentials the matrix of the second derivatives defined by (6},
and forming the trace of this matrix, one finally obtains, after
a retransformation of the factors uz to the left side of the

relation

D)IA D‘”/‘n/(x’f)(“)

U {x,)r’){ Ve }M "yl = (29a,b)
¢ N1 DD, ' ¢

~

w, U
(11 D,At )%»)(42 D"+ l)}r)/v
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H ds d3 [(H_S)( 30 F (s)/\7§""; (3)

oot

VEL O F L IN 4 05125015 A?f ”"“(5)],

vn

+(-3) (1251(12

In (29) the effect of the finite parallel transfer has been
completely absorbed by unitary transformations (26) of the field
tensor or its derivative; by é” and ﬁ”/we distinguish parallel
transfer from x to x' and to ¥ . A further formal absorption
of U by covariant derivatives is possible, if, assuming suffi-
cient analytic properties of ¥, expression (26) for jFﬁ) is
replaced by its Taylor expansion about the midpoint x at s=0,
which due to (12), k27b) and (5d) gets a compact form involving

the exponential of the covariant tensor derivative (10),

3_;“'(”}:(expiés}xba)’f;v(x). (30)

With the insertion of (30) the integrations in (29) may be
explicitly performed; subtraction of (29a) and (29b) and
evaluation of the form (5¢) for N by substituting }¥- idldp, ,

Y S P, would then lead to a completely equivalent form of
the equation of motion (2a) as a formal partial differential
equation for the Wigner transform A/(np) (4) , where all orders
of the differential operators Dy and J/pr are involved. The ex-
pansion (30) into terms involving increasing derivatives of the
field-strength at the midpoint has the meaning of a semiclassical
expansion of the gquantum egquations similar to the expansion of
products of Wigner transforms in the non-relativistic case [6],
and can be truncated for sufficient homogeneity of the field.In
the present work we restrict ourselves to first-order expansion
of (30) including the gradient correction, and to expansion to

the same order (in #) of the equation of motion after® insertion
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of (30). The result has the compact form

PND/‘A/+4ZP/‘JQ[;V{%~‘))A/} (1)
Iy 12 J 4 « J 4 ~ Vo pA _
L7 D] i i (D8N ) 2 e i (R F7 W)=

Restriction to the first two terms means the pure classical limit
of the mean field (Hartree-) approach (2a) of the equation of
motion of matter coupled to a Yang-Mills field. In the Abelian
special case of electrodynamics, where %{‘w.,s is replaced by
the simple product, and the covariant tensor derivative D. (10)
reduces to the ordinary derivative Jr)this limit is the standard
relativistic Vlasov equation [7). Beyond this limit, to (31) are
included field-gradient corrections together with similar contri-
butions of the same_ order h, which, involving commutators, only
occur in non-Abelian applications. The standard Vlasov equation
appears thus as the Abelian special case of all five terms of the
approximation (31) for the general Yang-Mills case.
For a non-Abelian situation eq. (31) can be further reduced

by separating the tensor equation as well as its tensor solution

into the trace and the traceless part. With restriction to
chromodynanics, one thus obtains the following system coupling
the singlet part n, and the octet part A@ of the Wigner transfor-

med density matrix of quark matter

HDETrN/ A/s?_/‘/—éb’l,:’: (32)

P/‘d no+P*d‘J’7(Tr}“/\(§) =0 133)

In a similar way, by adding,instead of subtracting, the con-
tributions of (29a,b), one obhtains a semiclassical expansion of

the Hermitian part of eq. (2)
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DOIN g B LR N] e m0 (5)

M

~tia

P KA
iprem -

where, to the order of the commutator terms of (31), corresponding
anti-commutators occur plus a product termFVF. In the pure
classical limit, this equation would read@ﬁm%V=0and just impose
the on-shell conditionA/wJ(ﬂwn})to the solution of the Vliasov
equation; so (35) mayAbe regarded as some guantum-mechanical
modification of this supplementary condition to the general solu-
tion of (31}).

To close the model of guark-gluon interaction, the generali-
zed Vlasov equation describing the motion of guark-matter coupled
to a classical gluon field must be completed by a generalized
Maxwell equation,which determines this field as the instantaneous
mean gluon-field generated by the gquark-matter. The mean gluon
field may be defined by replacing in the Maxwell-type equation
of the quantum field theory the current density operator by its
expectation value with regard to the actual guantum-state of the

matter
oo 0 = 5 (Y, 00 (D, Y 00) ~(D,¥ ), ) >, G6)

Due to the octet character of. the gluons, the Maxwell equation
only involves the traceless part ;y of (36)

moo )
¥, =97, . @3

I v

The current density defined by (36) is just given as the first
p -moment of the solution of the Vlasov equation, and the same is

true for the traceless parts

- [
}\:)v (x) = ](Tﬁ%" Py /v(gl (YIF) 5 (33)

this relation is easily proved by insertion of the Wigner trans-
form (4), transition to f‘J/)}V and use of ea. (12) for the U
matrix. The covariant continuity eguation for ; or, as consistent
with (36), for },,



N -
Dol =0 (39)

is obtained by p -integration of the Vlasov equation.

The semiclassical model developped in this work and given by
the coupled equations (33), (34), (37) and (32), together with
a supplementary condition of the type (35), may be of use to
describe nuclear matter under extreme conditions beyond the de-
confinement transition,in particular involving a gluon field
sufficiently strong to justify neglection of its quantisation.
Apart from inclusion of matter spin, and further guantum correc-
tions of the matter density matrix which in principle are already
provided for in this work, a consequent extension of the model,
on the way to describe the deconfinement transition itself,
whould also include corrections of the mean field concept due to
the quantisation of the gluon field, such as the fluctuations on
the background of the mean field. On the other hand, with the aim
of some application to astrophysics, one would have to add the
coupling to the mean gravity field of the system by a generaliza-

tion of the formalism for curved space.
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