SPIN-WAVE SURFACE PARAMETER CHARACTERIZATION OF MAGNETIC THIN FILM INTERFACES
H. Puszkarski

To cite this version:
H. Puszkarski. SPIN-WAVE SURFACE PARAMETER CHARACTERIZATION OF MAGNETIC THIN FILM INTERFACES. Journal de Physique Colloques, 1984, 45 (C5), pp.C5-325-C5-327. <10.1051/jphyscol:1984547>. <jpa-00224165>

HAL Id: jpa-00224165
https://hal.archives-ouvertes.fr/jpa-00224165
Submitted on 1 Jan 1984

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
SPIN-WAVE SURFACE PARAMETER CHARACTERIZATION OF MAGNETIC THIN FILM INTERFACES

H. Puszkarski

Institute of Physics, A. Mickiewicz University, Poznań, Matejki 48/49, 60-769, Poland

Abstract - The rapid progress in spin-wave resonance (SWR) studies of magnetic thin films, initiated in 1958, has since abated. This report is aimed at showing how the method, presently applied to the properties of magnetic surfaces and interfaces, has undergone a revival. We shall give a review of recent experimental SWR work on monocrystalline magnetic thin films and its theoretical interpretation based on the "surface inhomogeneity" model involving the spin-wave pinning parameter. Special attention will be given to effects related with the presence, in SWR spectra, of resonance lines corresponding to surface magnons. In the analysis, the pinning parameters of both surfaces of the film are determined by having recourse to the relative intensities of bulk and surface resonance lines. This approach allows to achieve essential insight into the microscopic mechanisms which generate anisotropies on the magnetic surfaces and interfaces. The feasibility of novel applications of the method to the study of bulk and interface magnetic interactions will also be considered.
BIBLIOGRAPHY

General:
1. C.F. Kooi, P.E. Wigen, M.R. Shanabarger and J.V. Kerrigan
 "Spin-Wave Resonance in Magnetic Films on the Basis of the Surface-
 Spin-Pinning Model and the Volume Inhomogeneity Model"
2. R.F. Soohoo
3. V.A. Ignatchenko, Ed.
 "High-Frequency Properties of Magnetic Films"
 Academy of Sciences of the USSR
 Krasnoyarsk 1978 /in Russian/.
4. B. Hoekstra
 "Spin Wave Resonance Studies of Inhomogeneous La, Ga:YIG
5. Camillo Borghese and Paolo De Gasperi
 "Growth of Magnetic Garnet Thin Films and Related Magnetic
 Resonance Experiments"
 Chapter 8 in: Proceedings of the Twenty Second Scottish
 Universities Summer School in Physics "MAGNETISM IN SOLIDS -
 SOME CURRENT TOPICS", University of Dundee 1981.
6. H. Puszkarski
 "Spin Wave Resonance - A Tool for the Study of Magnetic Surface
 Interactions"
 Chapter 9 in: Proceedings of the Twenty Second Scottish
 Universities Summer School in Physics "MAGNETISM IN SOLIDS -
 SOME CURRENT TOPICS", University of Dundee 1981.

Recent developments in theory and experiment:
1. J.T. Yu, R.A. Turk and P.E. Wigen
 "Exchange-dominated Surface Spin Waves in Thin Yttrium-Iron-
 Garnet Films"
2. P.E. Wigen, T.S. Stakelon, H. Puszkarski and P. Yen
 "Determination of Complex Magnetic Surface Energies from SWR
 Spectra"
3. P.E. Wigen and H. Puszkarski
 "Microscopic Model for the Tensorial Surface Anisotropy Field
 Observed in Thin Yttrium-Iron Garnet Film Spin-Wave Resonance"
4. O.G. Ramer and C.H. Wilts
 "Surface Effect in Spin-Wave Resonance in Thin YIG Films"
5. George T. Rado
 "One-ion Mechanism of Magnetocrystalline Surface Anisotropy
 Energy: Yttrium Iron Garnet"
6. H. Puszkarski
 "Theory of Surface States in Spin Wave Resonance"
7. A.P. Cracknell and H. Puszkarski
 "Symmetry Properties of the Surface Pinning Parameter in
 Magnetic Thin Films"
8. Diep-The-Hung H. Puszkarski and J.C.S. Lévy
"Effect of Elliptical Spin Wave Polarization on the Surface
Pinning Parameter"
Le Vide, les Couches Minces 204 /1980/ 313.

9. A.S. Parshin and N.S. Chistyakov
"Surface Spin Waves in Monocrystalline Manganese Ferrite Films"
Solid State Physics 18 /1976/ 58 /in Russian/;
"Bulk and Surface Spin Waves in Monocrystalline Manganese Ferrite Films"

10. J.S.S. Whiting
"Surface State and Surface Anisotropy in SWR in Single-Crystal Nickel Films"

"Spin-Wave Resonance in Single Crystal Nickel Films"

12. C. Vittoria, J.J. Krebs and G.A. Prinz
"Spinwave Resonance in MBE Grown Iron Films"
to be published

13. K. Uematsu, N. Deguchi and Y. Kitō
"Photoinduced Change in SWR Spectra of Si-Deposited YIG Thin Films"
contributed to the 10th Inter. Coll. on Mag. Films and Surfaces, Sept. 1982, Yokohama.

"Spin-Wave Excitation Studies in Amorphous Ni₅₀ Co₄₀ P₁₀ Films"

15. J.C.S. Lévy
"Surface and Interface Magnons: Magnetic Structures
Near the Surface"