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DYNAMICAL EFFECTS IN NEUTRON OPTICS AND SPIN INTERACTIONS 

M. Forte 

Physics Division, Joint Research Centre - Ispra Establishment, 
21020 Ispra (Val, I t a l y  

Re'sume' - On e'tudie la production d'effets d'optique neutronique qui sont 
sensibles 2 la diffusion non-en avant du spin dans l e s  conditions de la 
diffraction dynamique. On considgre l e s  cas  des  interactions spin-orbite 
et  des interactions hypothe'tiques qui violent P et T.  

Abstract  - The generation of neutron optical effects, which a r e  sensitive 
to non-forward spin scattering in  dynamical diffraction conditions, i s  
studied. Cases of spin-orbit and of supposed P and T violating interactions 
a r e  considered. 

In the study of low-energy neutron spin interactions, the most sensitive experi-  
ments a r e  based on neutron optical effects. We consider, for  example, the P- 
violation effects, namely the spin rotation and the helicity-dependent transmission 
due to weak currents  in  the neutron nuclear interaction, ,which have been observed 
with various nuclear targets and a r e  reviewed in  different papers of this Workshop. 
Effects of the f i r s t  and of the second kind a r e  determined, respectively, by the 
rea l  and by the imaginary spin-dependent part  of the optical potential. In ordinary 
targets ,  the optical potential i s  proportional to the forward coherent scattering 
factor Fo of target centres ,  thus excluding the possibility of optical effects related 
to spin-orbit and to  other spin interactions, violating both the P and T symmetry,  
which do not contribute to forward scattering. 

In a perfect crystal ,  instead, the propagation of coherent neutron waves, approach- 
ing diffraction conditions ko-lch = = (reciprocal lattice vector),  i s  strongly depen- 
dent on the periodical potential structure,  _which appears in  the expression of the 
wave vectors in the combination FhF-h = FF of the reflection and antireflection 
structure factors. Therefore, coherent spin effects related to non-forward spin 
scattering a r e  possible and can be described by the dynamical theory of diffraction. 
Different aspects and cases  a r e  considered in  a previous work /1/ (and references 
therein), looking a t  spin effects in the emergent transmitted and reflected neutron 
beams. We shortly review a few relevant points. 

The scattering amplitudes, f o r  the considered spin interactions, a r e  antisymme- 
t r ic :  f6(k, kt )  = -&(kt, h). In this case ,  a non-monoatomic acentric structure i s  
necessary  to  have spin t e r m s  in FF .  Assuming a complex f, = ( s t i s ' )  o3 and a 
r ea l  nuclear amplitude fn, and separating the contributions of each amplitude 
t e rm,  we have 

The relevant spin t e r m s ,  referring the relative phase angles to6,  = 0, a r e  given 
by 

R ~ ( F F ) O /  1 F, I = -2(F$ I s in  6;, I ~ ( F F ) ,  / IFn I = 2 s in  6, 

and produce, respectively, spin rotation and spin transmission effects. The role 
of r ea l  and imaginary amplitudes i s  exchanged, with respect  to ordinary optics, 
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and the magnitude of spin effects i s  essentially independent of IF,) . 
The electromagnetic spin-orbit interaction gives a pure imaginary amplitude 
f S a  i/.g.kxklFe, with Fe the electric atom form factor. Related spin rotation effects 
can be quite large,  for  example rotation angles per cm a1 - 1, in the case of quartz 
and, therefore,  could offer a realist ic possibility to s t a r t  an  experimental investi- 
gation of dynamical spin effects with perfect and non-perfect crystals.  

The nuclear spin-orbit is usually negligible, but can be enhanced, with a complex 
amplitude, in the presence of near-threshold p-resonances. Referring to known 
nuclear parameters ,  but to hypothetical crys ta l  samples,  we estimate spin rota- 
tions a1 2. ,., 10-3 and polarization transmission effects per  c m  = 10-3 " 
10-4. A di rect  determination of these p-wave effects a t  threshold, with particular 
nuclei, may be interesting in connection with P-violation experiments. 

A simultaneous violation of P and T in  the neutron-nucleon interaction would allow 
a t e r m  f p ~  oc i G p ~  ~ ( h - k t )  in nuclear scattering /2/. In the vicinity of a p-reso-  
nance, f p ~  i s  expected to  be strongly enhanced and complex, in analogy with P- 
odd T-even interactions / 3 / .  We may a lso  refer  to known enhanced P-violation ef- 
fects and to assumptions on the relative coupling strength G P T / G ~  /2,4/, for an  
indicative upper l imit  estimate: a1 (, fo r  thermal  neutrons and a1 Z P1 d 10-4 
a t  resonance, in agreement with the estimate for  another kind of P- and T-viola- 
tion effects, a t  the 0.75 eV p-resonance of 139 La /4/. 

A most advanced investigation of P and T violation in  fundamental interactions is 
the sea rch  for  a neutron electric dipole moment, in free-neutron resonance expe- 
riments reported in this Workshop. The neutron atomic scattering includes an 
EDM amplitude of the fo rm ~ E D M  oc ipecr(h-&')re. An evaluation of the related spin 
rotation in a quartz c rys ta l  gives, for favourable reflections, a l  (rad/cm) %lo19 !? 
with R (cm) = pe/e.  A conceivable EDM experiment should be based on a back- 
reflection configuration, in the Bragg case,  to suppress spin-orbit effects. Pa r t i -  
cular techniques and feasibility problems a r e  discussed in / I / .  

Also for  the possibility of an  experimental investigation of relatively large  effects, 
a crucial  problem i s  the existence of a suitable crys ta l  target.  Acentric s t ructures  
a r e  not so  r a r e  and, in  a few cases ,  crys ta ls  of good quality a r e  available inclu- 
ding a variety of nuclides, however, a question to  be f i r s t  investigated concerns 
the degree of perfection which i s  really cr i t ica l  to observe dynamical spin effects. 

In the next par t  of this work we analzse the generation of spin effects inside a pe r -  
fect crystal. Certain parameters  a r e  defined in  the usual way by boundary condi- 
tions which refer  to a plane plate of thickness d, however we will put into evidence 
ra ther  general  relations and results ,  relevant for a further investigation of spin 
effects in non-perfect crystals.  

In the vicinity of a reflection, ko-kn = h, we consider the plane -wave solution in 
a periodical potential 

- A 

where go = l/go =Lo. fi and A~+/A,+ = -z+/F. - - - 

Continuity conditions a t  the entrance surface,  with an  incident wave 9E exp(i&. r), 
determine the direction of fi, parallel  to the ingoing normal, and 
lco = k + (1/2) k Fogo% (ordinary refraction, taking Fo and F i n  units of k2). 

The phase velocities have the fo rm 



- 
Z+= - -X+W with X = g(ko-l-cB). hk-' = g(b-bB), W = ( x Z + ~ F F ) ~ / Z  (3) 

Here X, with Zkg. h = h2, represents  the deviation f rom the centre of the diffrac- 
tion line, o r  resonance e r r o r ,  and _W i s  the pendellosung frequency, while the r e -  
flection geometry determines gh = kh. fi and g = l /g  = go/gh. I c i s  convenient to  se -  
parate the nuclear and the much smal ler  spin t e rm,  writing FF = (FF),+FF)o, 
with (FF), % I Fn 1 (assuming a negligible absorption) and to introduce reduced 
units . 

where t i s  the penetration depth in extinction length units, putting t = 0 a t  the en- 
t rance surface. The spin effects a r e  essentially due to spin t e r m s  in  the expozen- 
t ia l  factors of (Z), given by a reduced form (where  got i s  a coordinate along ko)  

In other cases  we can safely approximate 

In the Bragg case ,  we implicitly exclude the range where w2 ,< 0 (no transmission).  
The amplitude ratio i s  determined by the boundary conditions %(O) = 0 in  the Laue 
case  and Ph(d) = 0 in the Bragg case,  obtaining respectively 

- 
Ao+ = + z ~ / ( z + - z  ) and A = T ZF exp (Fiwgod) /N - of. 

with N the sum of numerators,  to have A o++Ao- = P (0) = P k(0) = 1. Therefore,  in 
the Bragg case,  the wave amplitudes include a pendglliisung factor, with a n  effec- 
tive dependence on spin t e rms .  

The relation 1  of 1 2 / I ~ o , l  ~z- ' /z  means that, for  a sufficiently large  reso -  
nance e r r o r  (say for w>, g1/2 in the Bragg case) and corresponding to i t s  sign, 
there  i s  one dominant transmitted wave, associated with the smal ler  of I z + I .  
A qualitative validity of this result  can be stated, in general, by the physiczl 
assumption I Ah+ / 2 + /(Ah- 1 < JAOt 1 + 1 AO- 1 2. 

To proceed, i t  i s  convenient to consider the current  densities associated with 
'+'o(r) and qh(%, given by Lo, h ( ~ )  = ko, h(p*,, hyq, h h ) -  BY means of (2), disregarding 
the spin dependence, for the moment, and puttln k /A,+ l 2  = I,+., - k /AhL1 = Ih+, 
.Zf = R+,  we obtain the flux density, for any Io+)?o-. - - 

With our boundary conditions, a simple algebra determines the splitting ra t io  of 
the incident flux bk = kgo into 4, and $h a t  the surfaces ,  reproducing well known 
results. In the Bragg case,  referring to pendellosung averages { Io t}  = R ~ / J R + - R - J  
we obtain { @(t) } =  { 9 o(d) 1 = kgo w/ x (outgoing transmitted flux). 

Extending this formalism, we define spin current densities, regarding Po, h a s  
space x spin functions: 

where i may be omitted. We f i rs t  describe a smal l  spin transmission effect, due 
to  wo = ibo3,( (bd(<<l) .  To evaluate the flux 6.23 of 0 3 ,  we have to take the dif- 
ference of J. fi in  the spin states 03 = t 1. The result  
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shows a l inear growth of the spin flux versus  t ,  while the initial value fiS(0) = ,. nSh(0), for So(0) = 0 (unpolarized incident beam) i s  the negative of the outgoing 
spin flux of the reflected beam, in the Bragg case ,  and i s  vanishing, in  the Lane 
case.  In simple words, in  ( 7 ) ,  the l inear t e r m  C represents  the total neutron 
spin generated by the interaction and carr ied  to the surfaces by the transmitted 
and reflected beams, while the constant t e r m  i s  due to the inherent spin depen- 
dence of I,+, depending on boundary conditions. - 

- 
The equivalent form C = -2bt ~ o + ( l + g ~ + )  - I ~ - ( ~ + ~ R - ) ]  allows to verify that, in 
the Bragg case ,  on either side of the transmission curve, (that i s  for -gRt < 1 
and -gR- > l  o r  viceversa) the sign of Z i s  uniquely defined and reve r ses  like x. 
This relevant result  i s  valid in general. 

Our boundary conditions give Ih+ = Ih- and, therefore,  2 = -2bt(Iot-~o-).  In the 
Bragg case ,  the pendelltjsung average i s  ; C } = -2bt x/l X I .  In the Laae case 
Z = g. S = gS0, with no spin effect in Jh  (with no nuclear absorption). 

Finally, we can evaluate the neutron flux polarization, given by 

In the Bragg case,  where P(d) i s  the transmitted beam polarization, we have 

In {P3(t)}, only the constant t e r m  i s  a n  average. According to  (9) and (4), some 
enhancement of spin effects (not included in  our previous estimates) i s  expected 
near  the total  reflection edge (w + 0) and it\ asymmetr ic  reflection withlg\>>l, 
in  the Laue case too. 

To describe the spin rotation around f 3, due to wu = a 3 ,  with I ad] <<I, we may 
consider a n  incident beam completely polarized along X I .  The same formal  re la-  
tions a r e  obtained but with -a, S2, P2 ,  e t c . ,  in place of b, S3, P g ,  etc. The approx- 
imate spin rotation i s  then given by P2. 

F o r  a sufficiently large  resonance e r r o r  and a relatively low reflection intensity, 
there  i s  a predominant Io+ o r  I,-, with a spin phase-velocity two o r  -wo, c o r -  
responding t o  the e r r o r  sign. In this approach, by dividing (7) by ( 5 ) ,  we obtain 
the simple relation P3x -2bgot (x / lx l ) ,  where b cx gw-l ,  and the analogous for P2. 
In general, i n  the l i m i t ~ 2 > > ~ ~ F ,  that i s  W % X = g(8-$B), a solution (2) reduces 
to  one refracted yave propagating in a direction near  ko, in a spin-dependent op- 
t ica l  potential (FF)u/2(8-8B). This form, independent of boundary conditions, 
represents  the effective dynamical o r  "resonance" neutron spin interaction with 
the crystal. 

A relevant question concerns the existence of coherent spin effects in non-perfect 
crys ta ls ,  where the optical-potential periodicity i s  al tered.  In this case,  simple 
plane wave solutions like (2) do not apply, but may be replaced following Takagi 
/5, 6/, by wave packets with a space representation 

where Do(r) ,  Dh(x) a r e  (narrow) distribution functions around refracted and reflec- 
ted neutron t ra jector ies ,  which satisfy partial  differential equations of the kind 



,. A 

where qo, qh a r e  coordinates along ko, kh. The lattice deformation, a s  a function of 
position, appears  in X' = X-k-l(a/aqh)h. y(r ) ,  where i s  the displacement of the 
a toms of a unit cell  (regarded a s  rigid) with respect to a perfect reference lattice, 
fo r  which X i s  defined. Usually, the second t e r m  in XI i s  assumed relatively smal l  
and slowly varying. In regions with no distortion, the Takagi equations a r e  sa t is -  
fied by a packet of ordinary solutions (2). As a f i rs t  approach we consider the case 
of a back reflection, in the Bragg case ,  in  a system composed of quasi-perfect 
blocks of a sufficient size (at  least  seve ra l  estinction lengths) with tilt angles,  r e -  
lative to the reference lattice, definitely less  than the intrinsic width of the reflec- 
tion (dminutes).  Therefore, in  any block, g = -1 and X t ( r )  X (reference value, 
determined by k). F o r  neutrons transmitted on a given side of the transmission 
curve, a substantial spin effect will resul t  by the accumulation of regular incre-  
ments in each block while weak i r r egu la r  spin changes through gra in  boundaries 
may be disregarded. 
The influence of lattice distortion can be studied by eq. (1 1) with (a/aqh) = -(a/aqo),  
which may be rewrit ten in reduced units t=klFn1 qo, x1=x'/1Fn(, etc. The equation 
admits a +ble solution iDo(x). I t  is easily seen that, by introducing a smal l  sp in  
t e r m  in FF = J F , ) ~  + (FF), = IFn 1' (l+ccr3), the solution i s  varied, approximate- 
ly, by a factor exp[io3 b+(t)] - (for 6+ <<l), such that - 

(L c/2w1)dt, with w' = (x12-1) 1 /2 

Therefore,  a lso  in non-periodical solutions Do+, respective spin-dependent phase- 
factors can be separated (with 6 +(t)  depending En the neutron trajectory) and spin 
coherence i s  preserved. This simple extension of the perfect-lattice case  (where 
w ' ( ~ )  = w and c/2w1 = a o r  ib) specifies the qualitative description of spin effects 
in the previous picture, and allows to foresee qualitatively s imi lar  effects in  d i s -  
torted blocks and in the whole crystal. Indeed, with reasonable physical assump- 
tions, further considerations following the line of previous cases ,  support the 
sign coherence of spin effects along neutron t r a j ec to r i e s ,  when the transmission 
occurs on one side of the effective reflection curve (including distortion and mosa- 
i c  broadening and assuming no satellites). In particular,  a description with one 
wave-packet (either Do+, 6+ o r  Do-, 6, ) i s  meaningful in the l imit  of a good t rans-  
mission in analogy with the perfect crys ta l  case.  
In summary, tke existence of coherent spin effects does not necessari ly require a 
long-range coherence of neutron waves but, a t  leas t  a sign coherence of the diffe- 
rential  spin-dependent phase velocity (or attenuation) along the neutron trajectories.  

The present discussion i s  preliminary, and does not consider, for  instance, the 
role of waves reflected and diffused by crys ta l  imperfections. Besides the ex- 
ac t  back-reflection, other cases  should be considered. Finally, we suggest that an 
alternative mechanism fo r  the selection of neutron waves with univocal spin effects 
i s  naturally occurring in (moderately) absorbing crys ta ls  and, particularly, in 
the anomalous transmission (also in the reflection) in the Laue case.  
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