ENHANCEMENT OF CRITICAL CURRENTS IN MULTIFILAMENTARY V3Ga CONDUCTORS BY ADDITION OF INDIUM

C. Frenzel, G. Fuchs, K. Fischer, W. Holzhäuser, F. Lange

To cite this version:
C. Frenzel, G. Fuchs, K. Fischer, W. Holzhäuser, F. Lange. ENHANCEMENT OF CRITICAL CURRENTS IN MULTIFILAMENTARY V3Ga CONDUCTORS BY ADDITION OF INDIUM. Journal de Physique Colloques, 1984, 45 (C1), pp.C1-425-C1-428. <10.1051/jphyscol:1984187>. <jpa-00223743>

HAL Id: jpa-00223743
https://hal.archives-ouvertes.fr/jpa-00223743
Submitted on 1 Jan 1984

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
ENHANCEMENT OF CRITICAL CURRENTS IN MULTIFILAMENTARY V₃Ga CONDUCTORS
BY ADDITION OF INDIUM

C. Frenzel, G. Fuchs, K. Fischer, W. Holzhäuser and F. Lange

Zentralinstitut für Festkörperphysik und Werkstoffforschung, 8027 Dresden,
D.R.G.

Abstract - Results of enhancement of current density of technical V₃Ga conductors by deposition of indium prior to diffusion annealing are presented. The influence of indium on the V₃Ga structure is discussed.

Recently it has been demonstrated that for the construction of superconducting high-field magnets besides Nb₃Sn also bronze processed V₃Ga multifilamentary conductors may be successfully used /1,2,3/. The highest fields which have been reached up to now by means of V₃Ga-NbTi magnet systems are 12.4 Tesla in 80 mm /2/ and 13 Tesla in 30 mm free bore /3/. Higher fields can be produced economically only by improving the overall critical current density (J₀) of the conductors. One possibility to achieve this aim are third elements, added to the CuGa matrix /4,5/. As was demonstrated in former investigations with single core wires the current carrying capacity was most effectively improved by indium /6/. The present paper deals with the enhancement of J₀ of technical conductors by adding indium.

Experimental

The samples used throughout this investigation were either wires with 0.18 mm diameter containing 109 filaments or stranded cables consisting of six wires and a central tungsten wire with same diameter. Etching and electroplating of indium on to the sample surface was performed prior to thermal treatment essentially in the same way as described earlier /6/. The samples were annealed in vacuum or in helium atmosphere.

The field dependence of the critical current of cables was measured in a V₃Ga-NbTi magnet up to 10 Tesla at 4.2 K. For that purpose the annealed samples (length 18 cm) were wound on to a sample holder with 26 mm diameter. The critical current was defined according to 1 μV per 10 cm length of sample. Additionally, measurements of critical currents of multifilament wires have been performed in Bitter magnets of ILMT Wroclaw up to B₀2. By using pole pieces the field range was extended to 22.5 Tesla. Samples for this measurement were annealed in a hair-pin like geometry according to the shape of pole pieces to avoid undue bending of the material.
In some cases additionally to \(I_c \) and \(B_c \) further parameters have been measured as critical temperature, layer thickness of \(V_3Ga \) using optical microscopy and concentration of indium and gallium by means of X-ray microanalysis.

Results and discussion

In Fig. 1 the critical current of cables is represented as a function of thickness of deposited indium and of annealing conditions, where \(I_c \) values refer to a field of 10 Tesla. With rising thickness of indium layer the critical current increases up to 60 per cent for annealing temperatures in the range from 555 °C to 570 °C.

For temperatures above about 600 °C and comparatively thick indium layers a decrease of \(I_c \) occurs. But it cannot be excluded, that the bending diameter of 26 mm causes already a mechanical degradation of the samples considering the fact, that a combination of high annealing temperatures with large amounts of indium results in quite brittle material. Measurements are under way to clear this problem.

In Fig. 2 the critical current density of multifilamentary wires related to the overall cross section of the samples is plotted against magnetic field up to \(B_{c2} \). It is obvious that the deposition of 2.6 µm indium prior to thermal treatment leads to an increase of current density in the whole field range. The highest \(J_c \) of \(3.3 \times 10^6 \) A/cm² at 15 Tesla was found after annealing at 570 °C.

Fig. 2 contains also the \(I_c(B) \) dependence of an indium-treated cable of 125 m length recalculated for one wire. A piece 1 m long was used for this measurement.

An essential cause for the improved critical current of samples containing indium is an accelerated \(V_3Ga \) layer growth rate, which was established for single core wires /6/ and also for multifilamentary conductors, see Fig. 3. Details of the influence of indium on the \(V_3Ga \) growth rate will be discussed elsewhere.

Fig. 4 shows the relative enhancement of critical current via reduced field \(B/B_{c2} \). A greater content of \(V_3Ga \) phase alone would only result in a field-independent enhanced \(\Delta I_c/I_c \). The rise of the curves in Fig. 4 towards higher fields therefore indicates a changed pinning in the \(V_3Ga \) layer of indium-treated samples which is especially favourable in the high field range.

The influence of low concentrations of indium on the intrinsic superconducting parameters of \(V_3Ga \) is small as is to be concluded from the small increase of critical temperature (≤ 0.2 K) and upper critical field (≤ 0.2 Tesla) of the investigated multifilamentary conductors.

The experimental evidence obtained by ESMA, that only a small amount of indium is contained in the \(V_3Ga \) layer is in accordance to the before-mentioned finding. Therefore, the changed pinning in indium-treated samples may be referred to the fact, that besides growthrate also the grain structure of the \(V_3Ga \) layer is influenced by indium. Investigations to settle this point are in progress.

Fig. 5 shows the comparison between the \(J_c(B) \) dependence of a \(V_3Ga \) sample annealed at 570 °C and commercially processed \(Nb_3Sn \) multifilamentary wires. It is obvious, that the \(J_c \) values of the indium-treated \(V_3Ga \) conductor in the high field range are comparable with those of the best \(Nb_3Sn \) conductors.
Fig. 1 - Critical current of cables at 10 Tesla as a function of indium deposition and annealing conditions
Fig. 2 - Influence of In on critical current density.
full symbols: 2 \mu m In depos.
empty symbols: without In
\(\triangle 540^\circ C/425h \) \(\triangledown 570^\circ C/215h \)
\(\bullet 570^\circ C/215h \) \(I_c/6 \) of cable
\(\blacksquare 630^\circ C/70h \)

Fig. 3 - Influence of In on \(V_3Ga \) layer growth rate
\(\bullet 2-3 \mu m \) In deposition
\(\bigcirc \) without In

Fig. 4 - Relative enhancement of critical current vs. reduced magnetic field

Fig. 5 - Comparison of In-treated \(V_3Ga \) wire (curve) with commercial \(Nb_3Sn \) wires /7/
\(\bigtriangleup \) AERE \(\bigtriangledown \) Airco \(\bigstar \) IGC
\(\bigcirc \) Airco \(\bigtriangleleft \) Vac. \(\bullet \) BNL/Airco
\(\blacksquare \) Airco + IGC