STATUS REPORT ON THE SWISS LCT-COIL

To cite this version:

HAL Id: jpa-00223685
https://hal.archives-ouvertes.fr/jpa-00223685
Submitted on 1 Jan 1984

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
MANUFACTURING DEVELOPMENT OF THE WESTINGHOUSE Nb$_3$Sn COIL FOR THE LARGE COIL TEST PROGRAM*

J.L. Young, T.L. Vota and S.K. Singh

Westinghouse Electric Corporation, East Pittsburgh, PA 15112, U.S.A.

COIL DESIGN

The goal of the Westinghouse Large Coil is to demonstrate the potential of Nb$_3$Sn for large scale applications to either high field or high current density magnets. The unique modular, distributed structure concept incorporated in this coil provides many manufacturing and design advantages. The distributed structure prevents the accumulation of forces which would lead to high conductor strain and insulation stresses. It also provides better distribution of structure and conductor over the cross-section of the coil and delivers a higher effective field on plasma when applied to a Tokamak Toroidal configuration. The modular construction permits parallel winding operations and eliminates the need for heavy structural welds.

The coil utilizes a cabled Nb$_3$Sn conductor which has been encased in a stainless steel jacket. The conductor is insulated with Kapton tape and then formed and inserted into spiral slots machined into the 24 aluminum plates. The 48 conductor lengths are formed, four at a time, with each set of four sufficiently long to wind 2 plates (see figure 1). The coil is wound in 2 halves which will be assembled together with close fitting stainless steel studs to form a consolidated structure. The conductor is cooled by flowing liquid helium into a cable through headers which have been formed around the conductor joints between the wound plate pairs. After the coil halves have been assembled, the headers are connected to the inlet and outlet manifolds. During the conceptual and final design of the coil, engineers experienced in manufacturing and manufacturing planning were an integral part of the design team. Manufacturing processes which were extrapolatable from normal, large electrical equipment manufacture were incorporated into the design. For all key process steps, plans were established and implemented to build prototypes, conduct qualification trials and to train and qualify personnel.

Table 1 lists some of the more important prototypical tasks. In every case, the completion of these tasks resulted in process modification prior to actual commitment to manufacture. Adoption of this philosophy was an invaluable aid to assuring the quality of the coil.

*NOTE: This work was sponsored by Department of Energy and Oak Ridge National Laboratory under Union Carbide Corporation Contract No. 22X31747C.
The layout of the manufacturing aisle is shown in figure 2. The conductor is received from Oxford-Airco reeled on 2.5M O.D. flat spiraled reels. The first step is to straighten the 110M lengths of conductor in a conventional 8 roll straightener. The conductor is then cleaned and any sharp features which could damage the insulation are removed. Although the conductor is leak tested by the supplier at liquid Nitrogen temperature in its reeled condition, it is rechecked after straightening to determine if any leaks have developed during heat treating or straightening. This is accomplished by enclosing a 6M length of conductor in a moveable vacuum chamber at room temperature while helium gas is introduced at 30 atmospheres. This system detects leak rates as low as 5×10^{-8} SCC/sec. To date the reliability of the welds has been 100%, and no leaks have developed subsequent to manufacture. After the leak check the conductors are taped with 7 half lapped layers of Kapton to provide the turn to turn and ground wall insulation.
The winding of the conductor is accomplished by forming the conductors to the exact contour of the grooves which have been milled into the aluminum plates (see figure 3). Pre-manufacturing trials were held to establish the tolerances and finishes attainable. These trials also verified that warpage due to material removal would not be a problem and plate thickness could be held very accurately. The aluminum plates are then fastened to a rotating table. The center of the table has provisions for the mounting of the forming tools. The conductor forming is accomplished by clamping the insulated conductor to the former and rotating the table while applying a force to the free, extended, end of the conductor through a hydraulically activated roller (see figures 4 and 5).
The winding trails, using dummy conductors proved extremely worthwhile. We established the need for a mylar tape slip layer between turns, and to adopt more turns of thicker Kapton tape than originally planned, for additional protection against winding damage. Valuable experience was also gained regarding the effect of conductor springback on conductor forming. Empirical data was generated to establish the tooling shapes which would provide congruity of the conductor and the structural slot configuration. In addition the proper location of tool placement was established to assure the proper start and finish of each radius.

After winding each pair of plates, the four conductors are joined to the conductors for the next pair of plates. Terminals have been formed on each end during conductor manufacture by swaging copper tubes over the cable. These terminals are joined by an electrical resistance butt weld. After X-ray examination of the butt weld a splice collar is brazed over the joint for added strength (see figure 6). The joints are then enclosed in a stainless steel header box which will be connected to the helium manifold. An extensive program of welding technique development, joint testing and welder qualification has given us great confidence in the quality of all these joints.

After both coil halves have been wound, they will be assembled together (see figure 7). Then the stud holes will be line reamed and the studs will be assembled and torqued. At this point the manifold system will be assembled, welded and leak checked by pressurizing with helium while the coil is in a vacuum test box.

CONCLUSION

During the development and implementation of this manufacturing process much was learned about the manufacturing techniques required to build a large advanced Nb$_3$Sn forced flow cooled magnet. To date, we have encountered no problems which would prevent scaling this concept to the larger sizes presently being planned for Tokamak reactors. We have every reason to believe we will be able to capitalize on the advantages of this concept to provide compact, high current density coils.

Reference