MAGNETIC MEASUREMENTS FOR TUNING AND OPERATING A HYBRID WIGGLER

D. Nelson, M. Green, K. Halbach, E. Hoyer

To cite this version:

HAL Id: jpa-00223672
https://hal.archives-ouvertes.fr/jpa-00223672
Submitted on 1 Jan 1984

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
MAGNETIC MEASUREMENTS FOR TUNING AND OPERATING A HYBRID WIGGLER

D.H. Nelson, M.I. Green, K. Halbach and E.H. Hoyer

Magnetic Measurement Engineering Group, Lawrence Berkeley Laboratory,
University of California, Berkeley, California 94720, U.S.A.

Résumé - Un wiggler hybrid, vanadium-permendur/terre-rare-cobalt a été
dessiné, construit et mesuré au Lawrence Berkeley Laboratory (LBL) comme
projet conjoint avec le Stanford Synchrotron Radiation Laboratory (SSRL) et
le Exxon Research and Engineering Company. Cet article décrit deux tech-
niques de mesures magnétiques utilisées pour caractériser et régler le wig-
gler. Nous décrivons des mesures à l'aide d'un gaussmètre à effet Hall qui:
(1) confirment et quantifient les distributions du champ sinusoidal du
wiggler, et (2) calibrent les ajustements du shunt à flux variable ce qui
peut fournir un "réglage fin" pour les pôles individuels. Nous décrivons
aussi les mesures des intégrales de l'induction magnétique avec des bobines
d'intégration et des intégrateurs électroniques. Des bobines et intégrateurs
furent utilisés pour (1) calibrer les courants "end-pole" requis pour
annuler les intégrales à demi-aimant, (2) mesurer l'intégrale de la com-
posante horizontale, et (3) mesurer les variations dans la position
longitudinale dans le wiggler.

Abstract - A hybrid, vanadium-permendur/rare-earth-cobalt (REC) wiggler has
been designed, built, and measured at the Lawrence Berkeley Laboratory (LBL)
as a joint project with the Stanford Synchrotron Radiation Laboratory (SSRL)
and the Exxon Research and Engineering Company. This paper describes two
magnetic measurement techniques used to characterize and tune the wiggler.
We describe Hall effect gaussmeter measurements that: (1) confirmed and
quantified the wiggler sinusoidal field distributions, and (2) calibrated
variable-flux-shunt adjustments, which can provide "fine-tuning" for indi-
vidual poles. We also describe measurements of integrals of magnetic induc-
tion with integral coils and electronic integrators. Coils and integrators
were used to: (1) calibrate the end-pole currents required to zero the
half-magnet integrals, (2) measure the horizontal-component integral, and
(3) measure variations in single period integrals as functions of longitu-
dinal position in the wiggler.

I - INTRODUCTION

A hybrid, vanadium-permendur/rare-earth-cobalt wiggler has been designed /1/,
built /2/, and measured /3/ at LBL as a joint project with SSRL and the Exxon
Research and Engineering Company. This wiggler magnet will be the source of syn-
chrotron radiation for Beam Line V1 at SSRL /4/. The wiggler has 27 periods each
7 cm long. The hybrid wiggler design incorporates rare-earth-cobalt material in
conjunction with vanadium-permendur poles to achieve high magnetic fields with
short periods. It achieves peak fields of 1.21 T at a 1.2-cm gap and a 1.64 T at
a 0.8 cm gap. An elevation section of the wiggler magnet is shown in Fig. 1.
(The measurement coordinate system is included in Fig. 1.)
II - MEASUREMENTS

A. Equipment

The LBL general purpose Data Acquisition System (DAS), used for magnetic measurements of the wiggler is described elsewhere /5/. Six data acquisition and five data processing programs were written for the wiggler measurements. Commercial Hall effect probes were used to measure three orthogonal components of magnetic induction. The three probes were calibrated to 0.1% and the effective centers were located to ± 0.1 mm. A holder located the three probes at common vertical and lateral positions, but separated longitudinally by a quarter "wiggler period" (17.5 mm). The holder was mounted on a sled which moved 2.5 m longitudinally and 80 mm laterally. Additionally, three "line-integral coils" were designed, fabricated, and calibrated at LBL for measuring magnetic induction integrals.

B. Hall Effect Gaussmeter Measurements

1. Full z-range; -1100 ≤ z ≤ +1100 mm, Δz = 1 mm

A primary measurement objective was to characterize the periodic magnetic field distribution on a plane of symmetry (y = 0). The approach used was to measure on a uniform grid, to save large quantities of data, and then to use post-processing programs to extract and display details of interest. Figure 2 shows a real-time plot of $B_y(x,0,z)$ at 2201 z-positions and 3 x-positions. Of immediate interest were accurate determinations of the peak-valley magnitudes and positions and the values of the minor components B_x and B_z at the 53 z-positions where $B_y = 0$. The DAS provided processed data minutes after these data were collected; additionally, the raw data are saved (with a backup), so that they are readily available for further analysis.

2. Stud Tuning Calibration Measurements

The calibration of the "variable-flux tuning studs" was accomplished with the DAS programmed to function in a prompting mode, collecting data on command, and providing immediate feedback of processed data so the operator could direct the next operation.

Each of the 57 vanadium-permendur pole pairs is equipped with 4 threaded holes that may accept tuning studs. The tuning studs for pole #29 are shown in Fig. 1. Threading studs toward the poles reduces the local reluctance, thereby reducing flux-density in the corresponding working gap and simultaneously increasing the flux density in the working gaps of the adjacent pole pairs. This effect alternates and diminishes with distance from the adjusted poles, and magnitudes depend on both the gap and the stud position. Calibration involved positioning the vertical component Hall probe to the center of the working gap of a pole pair and measuring magnetic field changes due to adjusting sets of 4 tuning studs associated with the five closest pole pairs. Because the field quality of the wiggler was adequate the tuning studs will not be used initially; however, to better equalize the magnitudes of the peaks and valleys, the calibration data may be used in conjunction with an algorithm to determine the appropriate tuning stud positions.

C. Magnetic Induction Integral Measurements

Integral coils connected to electronic integrators determine magnetic field integrals more accurately than is practical by numerically integrating point measurements. The line-integral coils used for these measurements were conservatively designed to meet a 25 G-cm resolution requirement with a LBL Mod 71 electronic integrator capable of resolving 1 μV sec /6/.

1. Half-Magnet, y-Component, z-Integral Measurements

The wiggler's two end pole pairs are equipped with coils to null the respective
half-magnet integrals (of the y-component). A technique was developed that minimized the effect of mispositioning the integral coil /7/.

A combined data acquisition/data processing program (1) prompts the operator to measure the uncompensated integral, (2) allows the operator to successively set end-pole currents, (3) measures and saves shunt potential and integrator output potential, and (4) processes, plots, and prints the half magnet integral vs end pole current. Figure 3 is a copy of the real-time plot associated with an half-magnet integral measurement.

2. Full-Magnet, x-Component, z-Integral Measurements

The horizontal (x) component was measured by flipping (180° about the z-axis) a long integral coil and measuring changes in flux-linkage due to \(\int_{-\infty}^{+\infty} B_A dz \).

3. Full Wiggler Period (70 mm) y-Component z-Integral

Prior to mating the upper and lower halves of the wiggler they were measured separately to check for sub-assembly errors. A sensitive full (z)-period ("null") coil was used to detect variations in \(\int_{y=35 mm}^{y=35 mm} B_y dz \) versus z as the coil was moved along the z-axis. No assembly errors were detected.

III - SUMMARY OF RESULTS

At the wiggler midplane, the vertical magnetic field is sinusoidal along the beam axis as expected. The averaged maximum midplane magnetic fields, for 53 poles (peaks and valleys) at various gap positions are summarized below. The maximum effects of adjusting tuning studs are tabulated. Since for small gaps the variation was better than ±2%, tuning studs have not been used. The end pole current settings were determined for 6 gaps, so that the vertical field integral was less than 50 gauss-cm for each half of the wiggler. Below are given the uncorrected half magnet field integrals. At a 1.2 cm gap, a total correction range of 2740 gauss-cm or 137 gauss-cm/ampere is available. End pole coil sensitivity is given.

The measured midplane horizontal field integral of the entire wiggler, which is not adjustable, is also tabulated.

Table 1. Summary of significant measurement results.

<table>
<thead>
<tr>
<th>Gap (cm)</th>
<th>Peak/valley data</th>
<th>Tuning-stud max. effect</th>
<th>Uncorrected half wiggler vertical field integral ((\mu T m))</th>
<th>End pole coil sensitivity ((\mu T m/\text{ampere}))</th>
<th>Wiggler horizontal field integral ((\mu T m))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.80</td>
<td>1.636</td>
<td>0.0079</td>
<td>0.0145</td>
<td>748</td>
<td>308</td>
</tr>
<tr>
<td>1.20</td>
<td>1.207</td>
<td>0.0078</td>
<td>0.0240</td>
<td>-11</td>
<td>-161</td>
</tr>
<tr>
<td>1.65</td>
<td>0.872</td>
<td>0.0059</td>
<td>0.0190</td>
<td>67</td>
<td>-51</td>
</tr>
<tr>
<td>2.70</td>
<td>0.462</td>
<td>0.0038</td>
<td>0.0120</td>
<td>120</td>
<td>13</td>
</tr>
<tr>
<td>4.50</td>
<td>0.191</td>
<td>0.0025</td>
<td>0.0075</td>
<td>93</td>
<td>36</td>
</tr>
<tr>
<td>7.00</td>
<td>0.061</td>
<td>0.0015</td>
<td>0.0045</td>
<td>54</td>
<td>12</td>
</tr>
</tbody>
</table>

Acknowledgments

The authors thank R. Avery, P. Eisenberger, T. Elioff, E. C. Hartwig, W. Hartsough, H. P. Hernandez, D. A. Shirley, L. J. Wagner, and H. Winick for project support. We also are indebted to R. Barton, L. Callapp, J. Chin, S. Klingler, J. Hodges, C. Silva, J. Wirth, and the entire LBL Assembly Shop for their assistance. This work was supported by the Director of Energy Research, Office of Basic Energy Sciences, Materials Sciences Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.
Fig. 1. Beam Line VI Wiggler, showing measurement coordinate system with origin centered at pole pair 29.

Fig. 2. Real time plot of 6603 data pairs: $B_y(x,0,z)$ vs z; $x = 0$, $x = -10$ mm, and $x' = +10$ mm; $\Delta z = 1$ mm.

Fig. 3. Half magnet integral coil data.

References
1. HALBACH, K., T64 (1983) C1-211.
2. HOYER, E. et al., LBL report LBL-15115 (March 1983).
5. GREEN, M.I. and NELSON, D.H., MT 8, Section LE3-02 (September 1983). Also available as LBL report LBL-15365 (1983).