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ENERGY DEPOSITION DISTRIBUTIONS FOR MULTIPLE ION-BEAM IRRADIATION OF
ICF TARGETS

T.D. Beynon

Department of Physics, University of Birmingham, Birmingham B15 2TT, U.K.

Résumé
Un formalisme est présenté& afin d'obtenir la fonction

de distribution de 1'énergie de déposition, pour une cible ICF

irradiée par des faisceaux d'ions multiples. Des résultats pour

une irradiation symétrique & 6 faisceaux, montrent gque des fluc-
tuations larges pourraient avoir lieu & cette fonction de dis~
tribution et gu'au moins 20 faisceaux sont nécessaires pour

adoucir ces effets.

Abstract

A formalism is presented for obtaining the energy
deposition distribution function for an ICF target irradiated
with multiple ion beams. Results for symmetrical 6-beam
irradiation show that large fluctuations would occur in this
distribution function, and that at least 20 beams are required

to smooth these effects.

1. Introduction

Hydrodynamic studies of ion beam - driven targets for
inertial confinement fusion (ICF) require a detailed treatment
of the geometry of the multiple beam (ie.‘'beamlet’)
conf iguration, in addition to the physics description of the
slowing down process. The spatial distribution of the

energy deposition arising from beamlet irradiation may well
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determine the subsequent stability of the compression of the
target, particularly in the case of ion beam irradiation where
the largest part of the ion energy is deposited near the end of
the ion's range. Thus, regions of beamlet overlap in the
target, even when each beamlet has a uniform intensity, can
give rise to local 'hot spots' which could drive instabilities.
Directly - driven targets might regquire a relatively lazxge
number of beamlets not just to maximise the irradiance symmetry
but to minimize the effects of radial space charge spreading

and self-field effects.

In this paper a detailed formalism is presented which
allows a total energy deposition distribution function to be
computed prior to its use in a suitable hydrodynamics code.
Although the formalism is general, specific applications are

limited in this paper to spherically symmetric targets.

2. Theory

The vector flux of test particles, ®(r,E,f1), at energy
E, position vector r and transport unit vector N in a medium
where only rectilinear Coulomb slowing down can occur, is given

by the solution of the Boltzmann equation

Qeve (1,E,Q) + L, (z, E) @ (r, E;) -8 (S(r,E) © (zx, E,))
I By - o Sk x, E.Q

Equation (1) is simply a balance equation in phase-space for the
steady-state b6-vector particle density n(r,v) where ¥ = v and

E = ymc? for a test particle of rest mass m. Q(z,E, 92) is the
source of such particles, S(r,E) is the slowing down power of
the medimum and Z, is the macroscopic absorption cross

section.
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The solution to (1) for a monodirectional and
monoenergetic plane source situated at x = 0, Q¢ = 2(1r)'l 8(x)
8(E-Eg5) 8(#—ny)., which produces an ion beam, isA

Eo

d(u-1 ) 8(x-x ) L (E") .
®(x,E, ) = ° ©  exp - 2
27S(E) E S(ED

for a homogeneous medium with the geometry of fig. 1, where

)
ae’
Xo = Ko ra (3)
S(E )
E
2
8 ]
X
/U-°= COSQO
X=0 M = cos @
E=-E

Fig. 1 Plane geometry for egn (2).

The energy current associated with the particle source of unit

strength is defined as

Je (x)} = 2m E GE £ (x,E,n) do ... (3)
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and is simply, from (2),

o
- E_(E)
Je(x) = E (x) exp — ) g?ﬁ) dE ... (4)
E(x)
where we have used the relationship
= dx
8 E) - E = 8(E-E ==
(x(E) Xo(E)) ( ) aE =

and E(x) is defined, for a given x-value, by the equation

Eg ,
=
X = /Lo _ S(’E.)
E(x)
From (3)
9 - —uy [S(EY

The divergence of J.(x) represents the energy
deposition rate per unit volume (or, strictly, the energy loss
rate per unit volume) of the test particles at a point x, W(x).

Assuming all energy is deposited locally, we have

o 1 '
o = L (E 4dE
s o 1 [S(E) E(x)Za(E) exp - _é(- )
W(x) = div J_ (x) Zq . S{(E )
E(x)

The first term in egn. (5) is the Coulomb collisional
enexrgy loss rate per unit volume from the beam, whilst, the
second term is the energy removal rate per unit volume from the
beam due to the absorption process represented by Ls-

Depending on the physical nature of these procesgses, this may
or may not result in a local energy deposition. Fission, for
example, would produce a non-local effect, where the Fission

fragments would have their own energy-range relationships which
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could be gquite different from the ions in the primary beam.
Finally, the exponential term in egn.(5) represents the
probability that Ehe particle has travelled a distance x
without being absorbed. The development in this paper
continues for Ly = 0 and g, = k. Ccmpetiticﬁ from fission

processes will be considered in a subsegquent paper.

The extension of egn.{5} to a non-absorbing

inhomogeneous material produces the resulkt (g = 1).
W(x) = = S(E)

where now E (x) is the soclution to the eguation

SE(x} , S(E,x) = O
ax

which may be obtained straight forwardly, for the initial

conditions E = E5, x = 0, using a Runge—Kutta technigue.

3.Extension to multiple beams

In fig. 2 we consider the ith peam of an array of beams
traversing the target, and evaluate the total energy deposition
rate per unit volume at a point r. The component of the ith peam
passes through an element of area dS = ndS at a position a; in
wne direetion 5, and traverses the distance Lj to r. Each beam
is considered to have cylindrical symmetry. A vector u is

defined, perpendicular to measured from the centre line of

Do
the beam, a; = a;,, to define any radial variation of intensity

the beam may possess.
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surface

centre of beam

Fig. 2 Vector description for an array of beams.

If ji(a;) denotes the ion beam current entering the
surface at a; (in ions per unit area per unit time) then we can
use the result of egn. (4) to write the energy deposition rate

per unit volume at r for the ith beam, wi(,’f,)’ as

Wi(r) = V.E(z) 3t (a;)

ii(ay) «VE(X)

E.
“Jo S(E)

where joi = nj Vo Ref}, for a beam of particle density nj,
initial velocity v, at a;. The energy E now satisfies the

relationship

L; = _dE'
S(E")

(Ol

We further assume that

. i
3% (a1) = 3 (aie) exe - (iemi/k?)
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That is, the beam has a gaussian radial intensity distribution,
centered about the beam axis of symmetry. The total energy
deposition function is now

wW(r) = - g,jl (2i0) exp - {gicgi/kZ] S(E) ..... (6)
i

(o4

4. Application to spherical geometry

For a spherically symmetric target the most convenient
coordinate system is that placed at the centre of the sphere,
as illustrated in fig. 3.

Then

L
Li = £+ + [(2e05)2 + RZ-22 |7

Fig. 3 Coordinate system at centre of spherical target.

Evaluation of (6) is now reduced to providing a prescription

for the direction cosines, 06 = (nx,ny,nz), for each beam.
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Probably the most convenient and useful approach is to use the
archimedean symmetry of a cube, inscribed in the sphere. One
set of beams, six in total, can be orientated perpendicular to
each of the six sides of the cube with the direction cosines
(+1,0,0),(0x1,0) and (0,0,zx1). The second symmetry set is the
beams lying along the lines joining opposite vertices of the
cube, giving a further eight beams with direction cosines (tS*%
13‘%, 13"%). A further twelve symmetric beams may be added by
joining the midpoint of each edge of the cube to the centre
point, with the cosines (+y2, +v2,0), (0,*v2,+y2) and (xv2,0,v2}
where * signs are to be taken independently. Combination of
these symmetry groups will therefore allow configuration of 6,

8, 12, 14, 18, 20 and 26 beamlets on target.

The results of a series of typical calculations are
presented for a 6-beam and a 26-beam irradiation of a
homogeneous solid carbon sphere of radius R = 1 mm. Bach beam
has a gaussian half-width (k in egn. (6))equal to the radius of
the target and is normalised to unit current (jé = 1 in egn.(6))
The ions have the slowing down power S(E) shown in fig. 4 which
represents a hypothetical heavy ion of energy 10 GeV with a

range of 0.24 mm in graphite.

Figure 5 displays the energy deposition function W(r) in
a diametral plane for a 6-beam irradiation. The plane is chosen
to be perpendicular to one pair of oppositely directed beams,

and contains the maximum overlap effect of the incident beams.

A number of observations can be made. Firstly, the
deposition distribution with the minimum number of beamlets
contains gross modulations with amplitudes varying by up to a

factor two, a result which is repeated in planes parallel to the



C8-131

( MeV/imm )

dE
dx
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Fig. 4 The slowing down power S(E) used in calculations.
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Fig. 5 Deposition function (in arbitrary units) in diametral

plane for a 6-beam irradiation.
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diametral plane. Secondly, fine structure is evident in the
distribution because of the penetration of the two beams

perpendicular to the plane at distances r)(RZ—xz)%= 0.94 mm,
where X is the ion range. Fine structure is alsc produced by
overlap of the remaining four beams. This effect is shown in

figure 6, which is the distribution contained in area ABCD of

figure 7.

o R -5.0
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Fig. 6 Deposition function (in arbitrary units) in one quadrant
(area ABCD of fig 7) of diametral plane for a 6-beam

irxrradiation.
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Fig. 7 Definition of various areas of diametral plane.

Figures 8 and 9 contrast the energy deposition function

in the same plane in area aBbe (fig 7) for 'a b-beam and 26- beam

irradiation, respectively. It is seen for the latter case

that the fine-structure fluctuations have disappeared although

the gross variation persists. Similar effects occur in planes

parallel to the diametral plane considered.
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Fig. 8 Deposition function (in arbitrary units) jin area aBbe

(cf. £fig 7)for a 6-beam irradiation.
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Fig. 9 Deposition function (in arbitrary units) in area aBbe

(cE. fig 7)for a 26-beam irradiation.

5. Conclusions

It is apparent from these results that in evaluating
target performance the beamlet geometry is as important as the
detailed description of the slowing down processes contained in
SfE). A few-beam irradiation produces rapidly fluctuating energy
deposition profiles, which are significantly smoothed when more
than about 20 beams are used, as is the case for the HIBALL
target design (1). Quantitative estimates of the effects of
these fluctuations require a detailed analysis with a suitable
eulerian hydrodynamics code. Moreover, it appears that a full
three-dimensional approach would be necessary. Some preliminary

two-dimensional analysis of this problem has been reported by
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Buchwald et al{2) but the present results would seem to indicate
that considerable ambiguity could exist as a result of the
particlar choice of planar slice taken through the target for
such two dimensional modelling. Additionally, the shape of

w(x) wouid not remain invariant during the compression stage of
the target, particularly if localised ion range shortening or

lengthening occurs in regions of high temperature and density.
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