TWO-DIMENSIONAL THEORY OF THE FEL AMPLIFIER FOR PULSED ELECTRON BEAMS

C. Tang, P. Sprangle

To cite this version:

HAL Id: jpa-00222571
https://hal.archives-ouvertes.fr/jpa-00222571
Submitted on 1 Jan 1983

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
TWO-DIMENSIONAL THEORY OF THE FEL AMPLIFIER FOR PULSED ELECTRON BEAMS*

C.M. Tang and P. Sprangle

Naval Research Laboratory, Washington, D.C. 20375, U.S.A.

Abstract.- We present a two-dimensional nonlinear self-consistent theory on the free electron laser (FEL) amplifier for a pulsed electron beam, where the pulse length is short compared with the length of the wiggler. The theory includes all available efficiency enhancement schemes.

The total radiation vector potential can be written as a sum of the input radiation and the excited radiation, i.e., \(\mathbf{A} = \mathbf{A}_{\text{in}} + \mathbf{A}_{\text{ex}} \). The excited radiation field can be written as a sum of Gaussian-like \(\text{TEM}_{00} \) modes with the spot size equal to the electron beam radius, i.e.,

\[
\mathbf{A}_{\text{ex}}(r,z,t) = \left(\frac{2}{k_{Dr}} \right) \left(\frac{w_{Dr}^2}{c^2} \right) \int_{\xi} \mathbf{d} \xi \mathbf{G}_{\text{ex}}(\xi, c(t-\tau), t) \mathbf{h}(\xi, c(t-\tau)) e^{i k_{Dr} (\xi z - \xi^2 / 2 r^2)}
\]

where

\[
\mathbf{G}_{\text{ex}}(r,z,t|\xi, \tau) = \left(\frac{z^2 + z_b^2}{r_b^2} \right)^{-1/2} \exp\left[-\left(\frac{r}{r_b} \right)^2 \left(\frac{z^2 + z_b^2}{r_b^2} \right) \right] \cos\left[\frac{w}{c} \left(\sqrt{z_b^2 + (r/r_b)^2} \xi - \frac{2}{w} \xi \right) \right]
\]

is the Gaussian \(\text{TEM}_{00} \) mode, \(z_b = \frac{r_b^2}{w_{Dr}} \) is the Rayleigh length associated with the electron beam, \(r_b \) is the radius of the electron beam, \(\gamma = \gamma_{Dr} \gamma_\gamma \), \(\gamma_{Dr} = (1 + (e^2 / m_0 c^2))^{1/2} \), \(\gamma_\gamma = (1 - \gamma_{Dr}^2)^{-1/2} \), \(\gamma_b \) is the axial velocity, \(w_{Dr} = (4\pi e^2 / m_0)^{1/2} \) is the plasma frequency, and \(\gamma_{Dr} \) is the peak plasma density, \(\xi \) and \(\xi_0 \) are the position of the electron relative to the center of the electron beam at time \(t \) and \(t=0 \) respectively, and \(\xi_0 \) is the initial phase of the electron in the ponderomotive well. The amplitude and wavenumber of the vector potential of the wiggler are \(\mathbf{A}_{\text{w}} \) and \(k_{Dr} \). The quantity \(\mathbf{h}(\xi, \tau) \) represents the axial electron pulse shape and \(\tau \) is the retarded time, which is obtained from the equation \(\xi_0 + z_b(\tau) + c(\tau-\tau) = \xi + z(t) \), where \(z(t) \) is the macroscopic location of the center of the electron beam at time \(t \). In deriving this, we have assumed a transverse Gaussian profile for the electron beam and taken the radius of the electron beam to be much smaller than the radius of the radiation beam, thus neglecting the transverse variation of the electron dynamics in the calculation of the phase \(\gamma \).

In the stationary resonant particle limit our integrals can be evaluated analytically for various axial electron pulse profiles. This formulation can be modified to study the FEL oscillator.

* This work was supported by DARPA under Contract No. 3817.