SHORT RANGE STRUCTURE AND SOME PHYSICAL PROPERTIES OF THE GLASSES IN THE SYSTEM Na2O-Ga2O3-SiO2

S. Goto, T. Hanada, R. Ota, N. Soga, N. Iwamoto, N. Umesaki

To cite this version:

HAL Id: jpa-00222450

https://hal.archives-ouvertes.fr/jpa-00222450

Submitted on 1 Jan 1982

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
SHORT RANGE STRUCTURE AND SOME PHYSICAL PROPERTIES OF THE GLASSES IN THE SYSTEM Na$_2$O-Ga$_2$O$_3$-SiO$_2$

S. Goto, T. Hanada, R. Ota, N. Soga, N. Iwamoto* and N. Umesaki*

Department of Industrial Chemistry, Faculty of Engineering, Kyoto University, Sakyo-ku, Kyoto, Japan

*Welding Research Institute, Osaka University, Ibaragi, Osaka, Japan

Abstract. - The glass-forming region in the system Na$_2$O-Ga$_2$O$_3$-SiO$_2$ was determined, and the density, hardness and thermal expansion coefficient were measured. The glass-forming region in this system was found to be much wider than that in the Na$_2$O-Al$_2$O$_3$-SiO$_2$ system. The properties showed a sudden change at the composition of Ga/Na ratio = 1. This anomaly is similar to that observed in the Na$_2$O-Al$_2$O$_3$-SiO$_2$ system. The results of IR spectra, X-ray emission spectra and X-ray diffraction patterns suggest that the non-bridging oxygens existing in sodium silicate glasses change into bridging oxygens with the addition of Ga$_2$O$_3$ at Ga/Na ratio less than 1 and then appear again along with the formation of Ga-O-Ga bond with further addition of Ga$_2$O$_3$ over the Ga/Na ratio of 1.

1. Introduction. - Previous studies on Na$_2$O-Al$_2$O$_3$-SiO$_2$ glasses revealed that many of their physical properties change abnormally at or near the composition of Al/Na ratio of 1/1,2/. In view of similarity between aluminum and gallium ions, it is expected that the physical properties of Na$_2$O-Ga$_2$O$_3$-SiO$_2$ glasses show similar anomalous changes to those of Na$_2$O-Al$_2$O$_3$-SiO$_2$ glasses. In order to verify this expectation, the glass-forming region in the system Na$_2$O-Ga$_2$O$_3$-SiO$_2$ was determined and various physical properties of the glasses were measured. To make the structural interpretation of the cause of these anomalies, the infrared spectra, X-ray emission spectra and X-ray diffraction patterns were obtained.

2. Experimental methods. - The reagent grade SiO$_2$, Na$_2$CO$_3$ and 8-Ga$_2$O$_3$ were used as the starting materials to obtain the following two series of glasses: A series; xGa$_2$O$_3$ \cdot $(100-x)$(Na$_2$O·2SiO$_2$)/3, B series; xGa$_2$O$_3$ \cdot $(100-x)$(Na$_2$O·SiO$_2$)/2, where x is the mole percent of Ga$_2$O$_3$. The
dendity, Vickers hardness number and thermal expansion coefficient were determined in the same manner as reported previously/3,4/. The infrared absorption spectra for the glasses and some related crystals were measured by the KBr pellet method from 250 to 4000 cm\(^{-1}\). SiK\(_8\) X-ray emission spectra were obtained with an electron probe X-ray microanalyzer. X-ray diffraction measurement was carried out with the use of a diffractometer with parafocusing reflect geometry and monochromatized MoK\(_\alpha\) radiation.

3. Results and Discussion.

3.1. Glass-forming region. - The glass-forming region in the system Na\(_2\)O-Ga\(_2\)O\(_3\)-SiO\(_2\) is shown in Fig. 1. Also shown is the glass-forming region in the system Na\(_2\)O-Al\(_2\)O\(_3\)-SiO\(_2\)/5/. The glass-forming region in the former system is much wider than that in the latter system.

3.2. Physical properties.- Various physical properties of the present glasses are shown in Fig. 2 as a function of Ga\(_2\)O\(_3\) content. Clearly, they change abnormally at or near the composition of Ga/Na ratio of 1.

3.3 Infrared spectra, X-ray emission spectra and X-ray diffraction. - In sodium silicate glasses, four infrared absorption bands appeared at or near 1100, 900, 760 and 480 cm\(^{-1}\). When Ga\(_2\)O\(_3\) was added, the two bands 1100 and 900 cm\(^{-1}\) became one band around 950 cm\(^{-1}\). At the same time, the band 760 cm\(^{-1}\) disappeared and the band at 480 cm\(^{-1}\) became small, as new three bands appeared at 730, 620 and 540 cm\(^{-1}\). Carnegie and nepheline-type compounds containing Ga\(^{3+}\) in place of Al\(^{3+}\) gave the same IR bands at 950, 730, 620 and 540 cm\(^{-1}\). From the structures of these compounds, these bands are considered to be associated with the vibrational modes of Si-O bond and Ga-O bond in Si-O-Ga bond. These results suggest the formation of Si-O-Ga bonds (in place of Si-O-Si and/or Si-O\(^-\)) with addition of Ga\(_2\)O\(_3\) to sodium silicate glasses. When the Ga/Na ratio became more than 1, new bands appeared at 700 and 500 cm\(^{-1}\) in addition to the above four bands. These two bands are observable also for \(\beta\)-Ga\(_2\)O\(_3\) crystal. This suggests the formation of the Ga-O-Ga bonds when the Ga/Na ratio becomes more than 1. The nature of oxygen connected to Si may be discussed through the chemical shift of SiK\(_8\) emission spectrum, which is known to change with the amount of the non-bridging oxygen/6/. The re-
Results of the chemical shifts for A and B series glasses are plotted as a function of Ga$_2$O$_3$ content in Fig. 3. The chemical shifts become smaller with increasing Ga$_2$O$_3$ content up to Ga/Na ratio 1. Further increase of Ga/Na ratio causes an increase in chemical shift. This means that the non-bridging oxygens decrease with increasing Ga$_2$O$_3$ up to Ga/Na ratio 1 and then increase with further addition of Ga$_2$O$_3$ to the glasses. The same conclusion was obtained from the result of band width of SiK$_\beta$ emission spectra. The band width of SiK$_\beta$ emission spectrum becomes wider when oxygen changes from the bridging oxygen to the non-bridging oxygen.6 As shown in Fig. 4, the band width becomes narrowest at Ga/Na ratio 1. The X-ray diffraction study gives direct informations about the short range structure. The radial distribution function (RDF) observed for A-25, B-10, B-30 and B-45 glasses are shown in Fig. 5. The first peak at 1.77-1.83 Å is due to the nearest neighbour ionic pairs Si-O and Ga-O. This peak has a good symmetry and cannot be deconvoluted into two peaks of Si-O and Ga-O. So, the data were analyzed as the mixed T-O (T=Si,Ga) ionic pair. The second peak at 2.34-2.41 Å is due to the nearest neighbour Na-O ionic pair. The third peak at 3.14-3.33 Å is due to the T-T ionic pair. The short range parameters for the nearest neighbour are summarized in Table 1. The coordination number of T ions ($N_{T/O}$) is near four,

![Graph](image-url)
which indicates that the coordination number of Ga ions is also four. The Na-O distance (r_{Na-O}) and the coordination number of Na ions ($N_{Na/O}$) for the B series glasses show the maxima at the Ga/Na ratio of 1. Imaoka/7/ has reported from the analysis of RDF that the basic structures for Na$_2$O·2SiO$_2$ and Na$_2$O·SiO$_2$ glasses are the layer and chain structure, respectively, and that the coordination number of Na ions is three for Na$_2$O·2SiO$_2$ and four for Na$_2$O·SiO$_2$ glass. Taylor et al./8/ has suggested that Na$_2$O·Al$_2$O$_3$·2SiO$_2$ glass has the six-membered ring structure and $N_{Na/O}$ is six. In view of their suggestions, it may be considered that the layer or chain structure of sodium silicate glass changes into six-membered ring with the addition of Ga$_2$O$_3$ to sodium silicate glasses. Thus, a structural model based on three dimensional six-membered rings was constructed and examined using the Debye scattering equation/9/ for A-25 glass, which has the same composition with the carnegiette-type crystal. In Fig.6, the $D(r)$ curve calculated from $S(r)$ for this carnegiette-like structural model is shown and compared with the observed $D(r)$ curve for A-25 glass. A reasonable agreement between the observed and calculated $D(r)$ curves can be seen. As given in Table 1, $N_{Na/O}$ for B-45 glass is smaller than that for B-30 glass. This seems to indicate that the three dimensional network structure breaks down when the amount of Ga$_2$O$_3$ becomes more than 1.

From these results of infra-red spectra, X-ray emission spectra and X-ray diffraction patterns, it is concluded that the non-bridging oxygens existing in sodium silicate glass change into bridging oxygens with the addition of Ga$_2$O$_3$ by forming GaO$_4$-Na$^+$ units when Ga/Na ratio is less than 1, but they appear again along with the formation of Ga-O-Ga bond with further addition of Ga$_2$O$_3$ over the Ga/Na ratio of 1.

References.

/7/ IMAOKA, M., Ceramics Japan, 16 (1981) 20.