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Abstract : We report a first observation of optical Ramsey fringes in the 

10 ym spectral region using a supersonic seeded beam of 7% SF, in He, illu­

minated by a CO laser in spatially-separated field zones. We have used either 

three standing waves or four travelling waves and obtained highly contrasted 
fringes with a 23 kHz half-width corresponding to a 5 mm distance between 
zones. 

Laser excitation of the vibrational energy of molecules in a beam can be con­
veniently detected with a cryogenic bolometer [1] and a demonstration of this tech­
nique in the case of the V_ mode of SF, excited by CO or N„0 lasers has been re­
cently given [2] . With this equipment the spatial analog of coherent transient 
effects such as the Rabi oscillations of the transition probability and the adiaba-
tic rapid passage were shown to occur respectively with plane and curved wavefronts. 
In an attempt to investigate the potential use of this method for very high resolu­
tion spectroscopy and optical frequency standards we have made a preliminary experi­
ment to detect the Ramsey fringes associated with saturation spectroscopy in an in­
teraction geometry comprising three or four field zones [3-14]. 

For this experiment we used the P(4) F.. and E components of the v. band of SF, 

which can be reached with a waveguide CO laser oscillating on the P(16) CO line 

at 10.55 Van. To control the frequency of this laser we locked it, with a tunable 
frequency offset, to a conventional reference laser locked to the 0(45) vj. SF, line. 

1 b 

The beam from the waweguide laser was spatially filtered and magnified to have a waist 
of w = 6 mm. In the case of illumination by this single beam the resulting width 
(FWHM) of the observed line was a combination of transit broadening and residual 
first-order Doppler effect along the optical axis and amounted to 300 kHz.We used 
the Rabi oscillation to set the laser beam waist precisely on the molecular beam [2]. 
Four oscillations of the signal could be observed with a 40% contrast with succes­
sive minima obtained for a total power of M,4,9 and 16 mW. 

To obtain fringes ,part of the laser beam was intercepted before the interac­
tion region by a screen which transmitted the light only through 1 mm wide slits. 
Two different geometries were used in these experiments. In the first one, three 
equidistant standing waves were generated by three equidistant slits of 5 mm sepa­
ration together with a corner cube placed on the other side of the molecular beam to 
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r e t r o r e f l e c t  t h e  l i g h t  back through t h e  slits. I n  t h e  second geometry, only two of 
t h e  previous s l i t s  were illuminated. An o f f s e t  between t h e  center  of t h e  s l i t s  and 
t h e  cen te r  of t h e  corner cube generated two counter-propagating s e t s  of t r a v e l l i n g  
waves with a 5 mm d i s tance  between adjacent  co-propagating waves of each s e t .  The 
spacing between t h e  two s e t s  can be  a r b i t r a r y  and was a c t u a l l y  l O m m  i n  t h i s  experi- 
ment. Highly contrasted f r inges  have been obtained i n  both cases  and a s  an example 
t h e  f i g u r e  d i sp lays  t h e  s igna l  corresponding t o  t h e  four  t r a v e l l i n g  waves case. 
Use of purely t r a v e l l i n g  waves t o  ob ta in  o p t i c a l  Ramsey f r i n g e s  has been suggested 
by t h e  ana lys i s  of references [4-5,101 and we have here a f i r s t  demonstration of 
t h i s  p o s s i b i l i t y  together  with t h e  Ca beam experiment of Helmcke e t  a1.[14] . The 
broad pedestal  has a width QJ1.4 MHz corresponding t o  t h e  t r a n s i t  broadening width 
across  a s i n g l e  zone. The f r inges  themselves have a 23 kHz width (HTm) cons i s ten t  
with a QJ930 m/sec peak ve loc i ty  of t h e  SF6 molecules 1151 .  

Figure 1. : 

Ramsey pa t te rn  obtained f o r  P(4)F1 SF6 l i n e  with four 
t r a v e l l i n g  waves ( i n t e r a c t i o n  geometry i l l u s t r a t e d  by t h e  
i n s e t ) .  The hor izon ta l  s c a l e  is  l i n e a r  i n  frequency and 
one f r i n g e  period corresponds t o  92.5 kHz. The t o t a l  l a s e r  
power before t h e  s l i t s  was 18 mW. The s igna l  was recorded 
i n  a s i n g l e  one minute sweep with a 0.1 second time constant 
and a 30 Hz modulation frequency of t h e  l a s e r  amplitude. 



IJe have t h e  choice between various mathematical t o o l s  f o r  t h e  t h e o r e t i c a l  descrip- 
t i o n  of these  experiments. The approaches which have been used i n  t h e  pas t  a r e  e i -  
t h e r  per tu rba t ive  ca lcu la t ions  using dens i ty  matrix diagrams o r  numerical t r e a t -  
ments of the  dens i ty  matr ix equations i n  t h e  s t ronz  f i e l d  case [ 4 , s  1 . Another po- 
werful t o o l  i s  t h e  2x2 matrix formalisn presented a t  t h i s  conference [ 16 l . Since it  
appl ies  very well  t o  t h e  present experiment it is  worth giving here a b r ie f  o u t l i n e  
of t h i s  theory. 

The evolut ion operator  f o r  t h e  two-component spinor@) describing a two-level 
system is w r i t t e n  : 1 

r 
g t , t o )  =zp[1 t ( w  - -) 2 d t l  t 

where H =(: : )+ V(t) an: = (z :,) a r e  e a s i l y  expanded on t h e  

a 
+ 

b a s i s  of t h e  P a u l i  matr ices  I,o. 

The time-ordering o p e r a t o r z n  be ignored e i t h e r  i n  t h e  case of t r a v e l l i n g  
waves with constant f i e l d s  i n  each zone o r  i n  t h e  case of standing waves with a r b i -  
t r a r y  t ransverse  dependence of t h e  f i e l d s .  

I n  t h e  f i r s t  case t h e  i n t e r a c t i o n  hamiltonian V(t) is  time-independent i n  a 
r o t a t i n g  frame ( i f  we make t h e  r o t a t i n g  wave approximation) : 

0 exp (+ikz+icp) 

exp(~ikz-icp) 0 

Zhe evolut ion operator  reduces t o  a simple 2x2 matr ix : 

Q(t- t  ) 
+i - s i n  ] 

2 n 2 

cos(kz+q), i s i n ( k z + d ,  a i kvz + i(yb-ya)/2 K 
f i e l d  vector  and with 

Yba = (yb + ya)/2 , a =.-. 2 +2 o ' D = D  

With four  t r a v e l l i n g  waves and molecules i n i t i a l l y  i n  s t a t e  a ,  we ob ta in  t h e  f i n a l  
two-component spinor  by simple mul t ip l ica t ion  of matr ices  : 

where T is t h e  time of f l i g h t  between t h e  f i r s t  two and l a s t  two f i e l d  zones. For 
t h e  sake of s impl ic i ty  we have taken Y = Yb and we have ignored t h e  time of f l i g h t  

between t h e  two c e n t r a l  zones but  we have w r i t t e n  e x p l i c i t l y  t h e  change of r o t a t i n g  
frame between these  two counter-propagating f i e l d s .  
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The p a r t  of t h e  f i n a l  upper l e v e l  population represent ing t h e  f r i n g e  p a t t e r n  
is simply : 

The Doppler phase cancels  out because it reverses  i n  t h e  second dark zone. 
( I t  is easy t o  follow t h e  corresponding t r a j e c t o r y  of t h e  pseudo-spin and t h i s  w i l l  

terms be i l l u s t r a t e d  i n  another paper).  The f a c t o r s  mult iplying t h e  o s c i l l a t i n ,  
expf2iQ T have t o  be numerically in tegra ted  over t h e  v d i s t r i b u t i o n  t o  obtain t h e  
exact &ape of t h e  f r i n g e s  envelope. Let us  f i n a l l y  po%t out t h a t  when t h e  f i e l d  
phases cancel out  (which is t h e  case ih our experiment) t h e  c e n t r a l  f r i n g e  corres-  
ponds t o  a negat ive contr ibut ion.  

I n  t h e  case of standing-waves we cannot completely remove t h e  time dependence 
of t h e  in te rac t ion  hamiltonian which is w r i t t e n  ( i n  t h e  r o t a t i n g  frame a t  UJ and i n  
t h e  molecular frame) : 

-+ + 
V = -UE cos(kz + kv t + cp) U(r + v t )  Ox 

+ 
where U(r) is  t h e  t ransverse  dependence of t h e  f i e l d  i n  each zone. 
The only p o s s i b i l i t y  t o  reduce t h e  t o t a l  hamiltonian t o  an operator  commuting with 
i t s e l f  a t  d i f f e r e n t  times is t o  neglect  t h e  u term during t h e  i n t e r a c t i o n  with 
t h e  f i e l d .  The evolut ion operator  is then simsly : 

with U(t)cos(kvzt+ kz + cp)dt b -m 

The time evolut ion of t h e  two-component spinor i s  again described by t h e  pro- 
duct of matr ices  corresponding t o  t h e  f i v e  zones and t h e  f i n a l  r e s u l t  f o r  t h e  
o s c i l l a t i n g  par t  of bb* has t h e  following form already derived by Dubetsky[6]  
with a d i f f e r e n t  approach : 

bb* = f exp(-2ybaT) cos 2 a T  s i n  2Q3 cos 2a2 s i n  2a1 

This formula d i sp lays  t h e  o s c i l l a t i o n  character  bu t ,  unfortunately,  does not  have 
t h e  s impl ic i ty  of t h e  t r a v e l l i n g  wave case s i n c e  f u r t h e r  in tegra t ion  on both z and 
v a r e  required t o  ob ta in  t h e  s igna l .  

A d e t a i l e d  comparison of t h e  observed l i n e  p rof i l es  with calculated ones i s  
present ly under way. The predicted apparent s p l i t t i n g  of t h e  f r i n g e  p a t t e r n  i n  a 
s t rong f i e l d  has been observed i n  t h e  t h r e e - s l i t  experiment and is a l s o  being in- 
vest igated.  

We expect now t o  be  a b l e  t o  increase s i g n i f i c a n t l y  t h e  resolving power with 
Gaussian zones separated by much l a r g e r  d i s tances  using t h e  corner cube techniques 
described i n  [ 1 7 ]  . Let  us f i n a l l y  point  out t h a t  a major advantage of supersonic 
beams f o r  an o p t i c a l  frequency standard i s  the  good monochromaticity i n  ve loc i ty  
space y ie ld ing  a well-defined second-order Doppler s h i f t .  
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