A SUGGESTION OF NOISE EXPERIMENT FOR SHOWING BALLISTIC TRANSPORT

P. Hesto, J. Vaissière, D. Gasquet, R. Castagné, J.-P. Nougier

To cite this version:

A SUGGESTION OF NOISE EXPERIMENT FOR SHOWING BALLISTIC TRANSPORT

P. Hesto, J.C. Vaissière*, D. Gasquet*, R. Castagne and J.P. Nougier

Institut d'Électronique Fondamentale, Laboratoire associé au C.N.R.S., LA 22
et Greco Microondes, Université Paris XI, 91405 Orsay, France

*Université des Sciences et Techniques du Languedoc, Centre d'Etudes d'Électro-
ique des Solides, Laboratoire associé au C.N.R.S., LA 81 et Greco Microondes,
34060 Montpellier Cedex, France

Résumé : La plupart des méthodes expérimentales tendant à mettre en évidence
le régime quasi ballistique sont fondées sur la mesure de la survitesse.
Nous suggérons une expérience permettant de mesurer la variation de bruit.
Pour cela nous mettons en œuvre une nouvelle méthode théorique de modélisa-
tion du courant de bruit S_{lg} dans la grille des FET, qui permet de montrer
que S_{lg} est relié à la température de bruit du canal actif sous la grille.

Abstract : Most of the experimental methods intending to exhibit quasi bal-
listic regimes involve the measurement of velocity overshoot. We suggest an
experiment in which the variation of the noise would be measured. For this
purpose we set up a new theoretical method for modeling the noise current
S_{lg} in the gate of FETs, which shows that S_{lg} is related to the noise tempe-
trature of the active channel under the gate.

INTRODUCTION

In very short devices, the carriers, when flowing from one electrode to the
other one, have no time to undergo enough scattering events so as to reach their
stationary state velocity. The transport is then said to be ballistic or quasi
ballistic. When the electric field is high, the acceleration during the free paths
overcomes the deceleration during the few scattering events, so that the carriers
are under velocity overshoot conditions. The d.c. characteristic of the device is
then a steady regime in which every carrier is in non steady state. An important
question is to estimate the effect of the velocity overshoot on the behaviour of
the device, but a still more basic question is to get sure that this phenomenon
actually occurs.
Many authors theoretically predicted ballistic transport in many semiconductors, by solving the transient Boltzmann equation. Many experiments are now designed to bring an experimental evidence of this phenomenon. Most of them consist in evidencing velocity overshoot. They use I-V characteristics of short devices [1] (although some problems may arise using such a technique [2]), microwave techniques [3], or optical excitations [4][5].

The purpose of this paper is to suggest the possibility of measuring the fluctuations of the velocity instead of its average value, since under ballistic behaviour, when no or few collisions occur, the fluctuations of the velocity are expected to diminish. The basic idea is then to measure, in the gate of a field effect transistor, the noise current induced by the fluctuations of the velocities of the carriers in the channel: the gate behaves like a probe and only the fluctuations in the active channel, under the gate, are detected by this probe, the "parasitic region" between the source and the gate and between the gate and the drain have no significant effect. Thus, when the length of the transistor is reduced (submicron FET), the electric field is high underneath the gate, the carriers are under quasi ballistic conditions in the active channel, so that the noise current of the gate is expected to diminish with respect to the one which could be observed in long FETs.

We shall briefly recall (section 2) the new method developed for getting the impedance field, which is particularly well suited for modelling the noise of FETs [7][8], then use this method for giving a method to determine the noise induced in the gate (section 3), and give the results for a simplified but realistic model (section 4).

2. DETERMINATION OF THE IMPEDANCE FIELD

Let us consider a FET (Fig. 1) where \(x \) is along a d.c. current line. At abscisse \(x \), the potential is \(V(x) \), and the current flowing through equipotential surface \(V(x) \) is \(I(x) \). The d.c. current is given by \(I(x) = f[V(x)] \). Writing \(V(x) = V_0(x) + \delta V(x) \exp i\omega t \) and \(I(x) = I_0(x) + \delta I(x) \exp i\omega t \), the first order terms of the conduction equations give

\[
\delta I(x) = \hat{\mathcal{Z}} \delta V(x) \quad (1)
\]

where \(\hat{\mathcal{Z}} \) is a linear operator. Let \(\mathcal{Z}(x,x') \) be the Green function of \(\hat{\mathcal{Z}} \), defined as:

\[
\hat{\mathcal{Z}} \mathcal{Z}(x,x') = \delta(x - x') \quad (2)
\]

where \(\delta(x - x') \) is the Dirac function. Eqs. (1) and (2) give:
Of course \(\mathcal{Z}(x,x') \) may depend on \(\omega \). By setting \(x = L \) in eq. (3), one gets the voltage variation \(\delta V(L) \) between the source and the drain, produced by a current \(\delta I(x') \) in the slice \(dx' \) : the ratio \(\mathcal{Z}(x=L,x') \) is the impedance field [7][8].

\[
\delta V(x) = \int_0^L \mathcal{Z}(x,x') \delta I(x') \, dx'
\] (3)

3. NOISE CURRENT INDUCED IN THE GATE

Due to the noise sources inside the channel, the potential \(V(x,t) \) of the equipotential surface crossing the current line at abscissa \(x \) fluctuates around its average (= d.c.) value \(V_0(x) \), thus producing a fluctuation of the extension of the space charge and hence of the channel of area \(A(x,t) \). The variation of the charge in the space charge region produces a variation of the current in the gate, through the capacitive coupling between the gate and the channel.

For getting this current, one writes the conservation of the current through a slice of the channel of thickness \(dx \) (see Fig. 2):

\[
di(x,t) = \partial Q(x,t)/\partial t \quad \text{where} \quad \partial Q(x,t) = q N_D \left[A_0(x) - A(x,t) \right] dx
\] (4)

Since \(A(x,t) = A[V(x,t)] \), eq. (4) gives:

\[
di(x,t) = -q N_D \left(\frac{dA}{dV} \right)_{0,x} \left(\partial V(x,t)/\partial t \right) \, dx
\] (5)
where the subscripts 0 and x mean the d.c. value at point x. When setting
\(V(x,t) = V_0(x) + \delta V(x) \) exp \(i\omega t \), thus \(\delta i(x,t) = \delta i_0(x) + \delta i(x) \) exp \(i\omega t \), one gets
(in practice the leakage d.c. current \(\delta i_0(x) \) can be neglected):
\[
\delta i(x) = - q N_D i \omega (dA/dV)_{o,x} \delta V(x) \ dx \quad (6)
\]

The a.c. gate current is then obtained by integrating eq. (6) over the total
length of the FET:
\[
\delta i_G = - i \omega q N_D \int_0^L \frac{dA}{dV}_{o,x} \delta V(x) \ dx \quad (7)
\]

that is, taking into account eq. (3):
\[
\delta i_G = - i \omega q N_D \int_0^L \frac{dA}{dV}_{o,x} \mathcal{Z}(x,x') \delta I(x') \ dx \ dx' \quad (8)
\]

For getting the spectral density \(S_{iG} \) of the fluctuation of the gate current
in the bandwidth \(\Delta f \) \([8]\), one multiplies \(\delta i_G \) by its complex conjugate \(\delta i_G^* \) and:
\[
\delta i_G \cdot \delta i_G^* = S_{iG} \Delta f , \text{ so that eq. (8) gives:}
\]
\[
S_{iG} = \omega^2 q^2 N_D^2 \int_0^L \int_0^L \frac{dA}{dV}_{o,x} \mathcal{Z}(x,x') \frac{dA}{dV}^*_{o,u} \mathcal{Z}^*(u,x') S_I(x', u') dx \ dx' \ du \ du' \quad (9)
\]

Now the noise sources at two different points are uncorrelated, and the
noise source \(K(x') \) is defined \([8]\) as
\[
S_I(x', u') = A(x') K(x') \delta(x' - u') \quad (10)
\]

Integrating eq. (9) over \(u' \) gives, taking into account eq. (10):
\[
S_{iG} = \omega^2 q^2 N_D^2 \int_0^L \int_0^L \frac{dA}{dV}_{o,x} \mathcal{Z}(x,x') \frac{dA}{dV}^*_{o,u} \mathcal{Z}^*(u,x') A(x') K(x') dx \ dx' \ du \quad (11)
\]

Eq. (11) can be written:
\[
\begin{cases}
S_{iG} = \int_0^L A(x') K(x') |\mathcal{Z}(x')|^2 \ dx' \\
\mathcal{Z}(x') = \omega q N_D \int_0^L \frac{dA}{dV}_{o,x} \mathcal{Z}(x,x') \ dx
\end{cases} \quad (12)
\]

Comparing eq. (12) with the usual one dimensional expressions for the noise \([8]\),
it can be seen that \(\mathcal{Z}(x') \) is a "transfer field", analogous to the impedance field
of Shockley et al. \([9]\).

Remark: the cross correlation between the gate current and the drain voltage
can be obtained by multiplying \(\delta i_G \), given by eq. (8), by \(\delta v_D^* \) obtained by
setting $x = L$ in eq. (3), which gives, taking into account eq. (10):

$$S_{vD} = -i\omega N_D \int_0^L \int_0^L \left(\frac{dA}{dV} \right)_{o,x} \mathcal{Z}(x,x') \mathcal{Z}^*(L,x') K(x') A(x') \, dx \, dx'$$

(14)

Two important results can be derived from eqs. (12) and (13):

a) The noise is proportional to ω^2, resulting on the capacitive coupling, so that it can be expected to prevail at high frequency, over the other noise sources, which are constant or decreasing with increasing frequency. However this is very difficult to achieve experimentally due to the high impedance of the gate circuit.

b) Outside the active channel, the area is almost constant, so that $(dA/dV)_{o,x} = 0$. Thus the contribution to $\hat{Z}(x')$, and hence to the noise, is mainly due to the active channel, where the electric field is high. This will be even better evidenced on the model below.

4. EXAMPLE

This theory is applied in the present section to a simplified but still realistic model of FETs (JG.FETs - MOS FETs), valid up to the pinch off voltage of the static characteristics. We suppose that the charge accumulation in the channel is negligible, that is $n = N_D$ (indeed n lies in the range 0.9 N_D - 1.1 N_D up to the pinch off voltage). The velocity-field relation will be taken, in Si channel FETs, as:

$$v(E) = -\mu_0 E/(1 - E/E_C).$$

The minus signs result from the conventions we adopt: I is set positive, although E is negative since $V_D > 0$ for a n type channel. The drain current is then given by

$$I = -\mu_0 E A/(1 - E/E_C) \quad \text{where} \quad E = -dV/dx$$

(14)

and the function $\mathcal{Z}(x,x')$ is $\{7\}$, where the subscript 0 means the d.c. value and $H(x - x')$ is the step function:

$$\mathcal{Z}(x,x') = -\frac{E_0(x)}{E_C} \left[1 - \frac{E_0(x')}{E_C} \right] H(x - x')$$

(15)

Eq. (15) carried into eq. (13) gives

$$\hat{Z}(x') = \left[1 - \frac{E_0(x')}{E_C} \right] \int_0^L E_0(x) (dA/dV)_{o,x} \, dx$$

Now $E_0(x) \, dx = dV_0(x)$ and $(dA/dV)_{o,x} \, dV_0(x) = dA(x)$, so that finally:

$$\hat{Z}(x') = \frac{1}{I_0} \left[1 - \frac{E_0(x')}{E_C} \right] \left[A(L) - A(x') \right]$$

(16)

This expression carried into eq. (12) gives the noise current in the gate:
The noise can be expressed using the noise temperature $T_n(x')$ instead of the noise source $K(x')$, since it was very recently shown \[12\][8] that both were related through:

$$K(x') = -4 k_B T_n(x') \text{Re}\left[\delta j/\delta E\right]$$

where k_B is the Boltzmann constant, j the current density, and the minus sign follows from the convention of signs adopted for E and I. Eq. (14), carried into eq. (19), clearly shows that the contribution of the regions outside the active channel is negligible since then $A(x') = A(L)$. The noise current in the gate is then directly related to the noise temperature in the channel, thus confirming that the gate plays the role of a probe useful for testing the noise underneath.

Remark: the cross correlation between i_G and V_D can also be achieved: eq. (15) carried into eq. (14) gives:

$$S_{i_G} V_D = \frac{1}{I_0^2} \int_0^L A(x') A(L) \left[A(L) - A(x')\right]^2 dx'$$

This expression is very similar to eq. (19), except that the integral involves $A(L) - A(x')$ instead of $[A(L) - A(x')]^2$, which means that the effects of the non-active regions, outside the channel, is less damped for $S_{i_G} V_D$ than for S_{i_G}, which is normal since V_D takes those regions into account.

5. **CONCLUSION**

We presented in this paper a new method for determining the noise current S_i_G in the gate so as the cross correlation $S_{i_G} V_D$. Quite simple formulas were obtained on realistic models, and can be used for simulating the noise of actual devices and comparing it with experimental results. It was shown that the gate of a FET behaves like a probe, so that the noise current depends on the noise temperature of the active channel.
In submicron FETs, the carriers undergo ballistic transport in the active channel, so that one would expect the diminution of the noise since less scattering events occur. This effect could likely be evidenced at temperature low enough for the Fermi energy level to be about the impurity energy level: for example in n-Si at 77 K, part of the donors are ionized, and the electric field enhances impurity ionization through impact ionization or Poole Frenkel effect, thus producing a high noise temperature \[13\], and one might think that its diminution, produced by quasi ballistic transport, could be observable.

REFERENCES