SURFACE ROUGHNESS KAPITZA CONDUCTANCE: DEPENDENCE ON MATERIAL PROPERTIES AND PHONON FREQUENCY

N. Shiren

To cite this version:

N. Shiren. SURFACE ROUGHNESS KAPITZA CONDUCTANCE: DEPENDENCE ON MATERIAL PROPERTIES AND PHONON FREQUENCY. Journal de Physique Colloques, 1981, 42 (C6), pp.C6-816-C6-818. <10.1051/jphyscol:19816240>. <jpa-00221326>

HAL Id: jpa-00221326
https://hal.archives-ouvertes.fr/jpa-00221326
Submitted on 1 Jan 1981

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
SURFACE ROUGHNESS KAPITZA CONDUCTANCE: DEPENDENCE ON MATERIAL PROPERTIES AND PHONON FREQUENCY

N.S. Shiren

IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, U.S.A.

Abstract.- A recent calculation of the surface roughness contribution to Kapitza conductance is compared with measurements on several different solid materials in contact with He II.

In a recent publication\(^1\) I have presented some results of a first order perturbation calculation of the effect of a statistically rough surface on Kapitza resistance. These results were compared with previously published data on Cu - He\(^3\), Cu - He II, and NaF-He II interfaces. Excellent agreement in magnitude, temperature dependence, and pressure dependence, was found at temperatures above 0.2 K for reasonably realistic values of the parameters (r.m.s. amplitude and correlation length) characterizing the roughness.

In this paper I compare the calculated Kapitza conductances for several materials with measured values compiled by Snyder,\(^2\) and also discuss the frequency dependence of the scattered phonons.

Let M indicate the wave polarization in the solid; M = l for longitudinal waves; M = σ, π for waves polarized perpendicular or parallel to the plane of scattering, respectively. Then, from reference 1, for an incident power per unit surface area per unit solid angle per unit frequency, \(\partial P_i/\partial \Omega_i\), at frequency \(\omega\) in the liquid, the fractional differential scattered flux into mode M in the solid is,

\[
D_M = \frac{\partial P_M/\partial \Omega_M}{\partial P_i/\partial \Omega_i} = k_M F_M G(\|k_M - k\|).
\]

\(k\) and \(k_M\) are the components of the wave vectors in the liquid and solid, respectively, parallel to the interface. The \(F_M\) are dimensionless expressions which are functions of all the various scattering and input angles as well as the velocities and densities. \(\partial P_M/\partial \Omega_M\) is the scattered power per unit surface area per unit solid angle per unit frequency.
$G(K)$ is the spectral density of the roughness modes with wave vector K and amplitude ξ_K. For a simple exponential surface correlation function with correlation length ℓ and mean square amplitude $\langle \xi^2 \rangle$ ($\langle \rangle$ indicates an average over an ensemble of representations of the surface), $G(K)$ is given by

$$G(K) = \partial \langle \xi^2_K \rangle / \partial K^2 = 2\pi \frac{\langle \xi^2 \rangle \ell^2}{(1 + K^2 \ell^2)^{3/2}} . \tag{2}$$

The frequency dependence of D_M is completely determined by the factor $k_M^4 G$. Let $H = (\| k_M - k \|)/k_M$, then H is independent of frequency, and

$$k_M^4 G(k_M H) = 2\pi \frac{\langle \xi^2 \rangle}{\ell^2} \frac{(k_M \ell)^4}{[1 + H^2 (k_M \ell)^2]^{3/2}} . \tag{3}$$

Thus D_M is directly proportional to the mean square of the perturbation parameter $k_M \xi$, and ℓ appears as a scale factor on the frequency.

The total power per unit surface area scattered into the solid is

$$Q_s = \sum_{M=\sigma, \pi, l} \int d\Omega_i \int d\Omega_M \int d\omega D_M (\partial \mathcal{P}_i / \partial \Omega_i) . \tag{4}$$

Its contribution to the Kapitza conductance is

$$h_K^s = \partial Q_s / \partial T , \tag{5}$$

and the total thermal resistance of the interface is

$$R = h_K^{-1} = (h_K^{AM} + h_K^s)^{-1} . \tag{6}$$

Fig. 1 shows the frequency dependence of Q_s for single frequency inputs. At the low frequency end $Q_s \propto (k\ell)^4 \langle \xi^2 \rangle / \ell^2$ as expected from Eq. (2). However, for large $(k\ell)$ small values of H are emphasized and Q_s tends to vary as the integral of Eq. (2) (over $H dH$), i.e. $Q_s \propto (k\ell)^2 \langle \xi^2 \rangle / \ell^2$. Since, as shown by Fig. 1, the scattering probability increases monotonically with frequency, for thermal inputs the scattered frequency distribution is shifted towards higher frequencies. However, thru H the amount of the shift is angle dependent; large angle inputs (from the helium) are shifted less than small angle inputs. These results are not dependent on the specific form of $G(K)$ used here. They hold for any normalized $G(K)$ which decreases monotonically with increasing K.

Snyder2 has tabulated the largest reported values of h_K for several materials. I have chosen to compare the theory with these data (rather than, e.g. the smallest reported
values) because it is more likely that $h^s_K >> h^M_K$. The integrations required for evaluation of Eq. (5) were all computed numerically assuming p_i proportional to a Debye density of states and equilibrium phonon populations. Of course, actual values of $<\zeta^2>$ and ℓ are not known so some choice has to be made. I have used the same values of $<\zeta^2>/\ell^2$ and ℓ/v_t (v_t is the shear wave velocity) for all the materials.

Fig. 2 shows the relative values of h^s_K plotted against relative h^max_K (from Snyder2). Obviously, we cannot expect exact agreement because of the unknown quantities $<\zeta^2>$ and ℓ, however the general trend is correct.

Fig. 2: Relative values of scattering contribution to Kapitza conductance, h^s_K, versus largest measured values2 of h_K for the indicated materials in contact with He II.

References