PHONON INDUCED ANOMALOUS RESISTIVITY IN STRUCTURAL PHASE TRANSITION OF PbSnTe

T. Suski, S. Katayama

To cite this version:

T. Suski, S. Katayama. PHONON INDUCED ANOMALOUS RESISTIVITY IN STRUCTURAL PHASE TRANSITION OF PbSnTe. Journal de Physique Colloques, 1981, 42 (C6), pp.C6-758-C6-760. <10.1051/jphyscol:19816223>. <jpa-00221307>

HAL Id: jpa-00221307
https://hal.archives-ouvertes.fr/jpa-00221307
Submitted on 1 Jan 1981

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
PHONON INDUCED ANOMALOUS RESISTIVITY IN STRUCTURAL PHASE TRANSITION OF PbSnTe

T. Suski and S. Katayama*

High Pressure Research Center, Polish Academy of Sciences, Warsaw, Sokołowska 29, Poland
*Department of Physics, Osaka University, 1-1 Machikane-yama, Toyonaka, 560 Japan

Abstract.- We report an anomalous electrical resistivity increment $\Delta \rho$ on PbSnTe near the vicinity of the structural phase transition temperature T_C. Applying hydrostatic pressure lowers T_C and leads to a decrease of $\Delta \rho$. It is reasonably interpreted that $\Delta \rho$ is due to the free carrier scattering from the soft TO phonon. The observed initial slope of T_C with increasing pressure is also discussed by using the Littlewood formula.

1. Introduction.- The IV-VI compound semiconductors such as (Pb,Ge,Sn)-Te alloys exhibit a structural phase transition from rocksalt structure to rhombohedrally distorted structure.\(^1\) The softening of the transverse optical (TO) phonon at $q=0$ indicates the structural instability in these small gap materials. A sequence of recent experiments have elucidated the nature of instability associated with the interband electron-phonon coupling.\(^2\) In particular PbSnTe has attracted our attention on the "zero" gap nature as well as on the phase transition. The purpose of present paper is to report the electrical transport measurements on $\text{Pb}_{1-x}\text{Sn}_x\text{Te}$ ($x=0.44$, 0.54, 0.80 and 0.86) from 4.2 to 150 K by applying hydrostatic pressure. From the anomalous portion of resistivity near T_C under pressure, we explore the pressure dependence of T_C as well as the free carrier scattering mechanism giving rise to $\Delta \rho$.

2. Experiments.- Measurements of Hall coefficient R_H and resistivity ρ were made for solution grown single crystal by using the technique of helium gas compression to produce the hydrostatic pressures. Details of crystal characterization were given elsewhere.\(^3,4\)

3. Results and Analysis.- Since Kobayashi et al.\(^5\) found a resistivity anomaly near 100 K in SnTe, many authors have investigated the anomalous increase in $\rho(T)$ on PbSnTe\(^3,6\) and PbGeTe\(^6\) near T_C. Suski et al.\(^7\) have observed $\Delta \rho$ in PbSnTe by applying pressure. In Fig.1, as a typical example, we show $\rho(T)$ vs. temperature(T) in Pb$^{0.56}\text{Sn}_{0.44}$Te with carrier concentration $p=2.3 \times 10^{19} \text{cm}^{-3}$ at four different pressures.
Fig. 1: ρ vs. T at four pressures.

There appears a prominent cusp-like anomaly $\Delta \rho$ for each pressure. The lowering peak shift with increasing pressure corresponds to decrease of T_c. According to earlier theoretical analysis on SnTe, $\Delta \rho$ in PbSnTe may also be due to the carrier scattering from the soft TO mode. Explicit form of resistivity by the TO phonon scattering ρ_{TO} is given by

$$\rho_{TO} = \frac{2k_F^2}{15pe^2} \frac{2}{k_B} N(E_F) \langle m_{TO}^2 \rangle \int_0^\infty \frac{d\omega}{\omega} \left[n(\omega_{TO}(k_F\omega)) [1+n(\omega_{TO}(k_F\omega))] \right],$$

where $\omega_{TO}(q)$ is the TO phonon frequency as $\omega_{TO}^2(q) = \omega_{TO}^2(T) + Aq^2$, k_F, $N(E_F)$ and m_{TO}, respectively, are the Fermi wave number, the density of state at the Fermi level E_F and the matrix element involving the interband electron-phonon deformation potential \tilde{F}_{CV}. If we used a high temperature expression for the Planck distribution function as $n(\omega) = k_B T / \hbar \omega$ in Eq. (1), ρ_{TO} is proportional to T.

Figure 2 shows the calculated ρ_{TO} by Eq. (1) and the experimental points from Fig. 1 as a function of T at four pressures on Pb$_{0.56}$Sn$_{0.44}$Te. The value of \tilde{F}_{CV}/\sqrt{A} is estimated to be 2.44×10^{-6} eV cm$^{-1}$ sec which is obtained by fitting ρ_{TO} with $\Delta \rho$ at 1 bar. The overall feature in $\Delta \rho$ is well reproduced by ρ_{TO} so that $\Delta \rho$ mainly comes from the soft mode scattering. Note that the cusp-like anomaly around T_c in ρ_{TO} is produced by the mean field behavior of ω_{TO} as
$\omega_{TO}^{2} = \alpha (T - T_{c})$ for $T > T_{c}$ and $\omega_{TO}^{2} = 2 \alpha (T_{c} - T)$ for $T < T_{c}$. In Fig. 3, we plotted $\Delta \rho$ at T_{c}; $\Delta \rho(T_{c})$ vs. pressure for all samples. The solid curves denote the calculations by using $\rho_{TO}(T_{c}) = g T_{c}$ with the observed values of T_{c}. g is adjusted for each curve to agree with $\Delta \rho$ at 1 bar. We ignored the pressure dependence of the energy gap E_{g}, effective mass m^{*} and A which give g in some combination. This approximation may be permitted as long as we are concerned with the carrier concentrations higher than 10^{19} cm$^{-3}$ as well as low pressure less than 1 Kbar.

We can see a good correlation between data and calculations. There appears a small discrepancy above 0.5 Kbar which may be attributed to our ignoring of the pressure dependence of E_{g}, m^{*} and A.

In Fig. 4, we summarized T_{c} vs. tin compositions x at 0.001, 1 and 1.5 Kbar in the four compositions with adding $T_{c} = 98.5$ K in SnTe at 1 bar. When we do not have data just at 1 and 1.5 Kbar, the values estimated by inter- and extrapolation are plotted. The observed initial slope of T_{c} with increasing pressure are estimated to be -14.5, -15.1, -13.4 and -15.0 K/Kbar for $x = 0.44$, 0.54, 0.80 and 0.86, respectively. According to the Littlewood formula, dT_{c}/dp for $x = 0.44$, 0.54, 0.80 and 0.86, respectively, are -12.5, -11.6, -11.8 and -11.9 K/Kbar. The trend and order of magnitude agree well with experiments.

In conclusion we reemphasize that the observed behavior of $\Delta \rho$ under pressure in PbSnTe near T_{c} is well understood by assuming the soft TO phonon scattering with ω_{TO} described by the mean field scheme.

The important contribution of Dr. M. Baj is gratefully acknowledged. One of us (S.K.) thanks Prof. K. Murase for his fruitful discussions. We are also indebted to Drs. K. L. I. Kobayashi and K. F. Komatsubara for supplying specimens.

References