THE EFFECT OF LATTICE STRAINS ON THE ACOUSTIC RELAXATION LOSSES IN DIELECTRIC CRYSTALS DUE TO MAGNETIC IONS

P. King

To cite this version:

P. King. THE EFFECT OF LATTICE STRAINS ON THE ACOUSTIC RELAXATION LOSSES IN DIELECTRIC CRYSTALS DUE TO MAGNETIC IONS. Journal de Physique Colloques, 1981, 42 (C6), pp.C6-456-C6-458. <10.1051/jphyscol:19816132>. <jpa-00221196>

HAL Id: jpa-00221196
https://hal.archives-ouvertes.fr/jpa-00221196
Submitted on 1 Jan 1981

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
THE EFFECT OF LATTICE STRAINS ON THE ACOUSTIC RELAXATION LOSSES IN
DIELECTRIC CRYSTALS DUE TO MAGNETIC IONS

P.J. King

Department of Physics, University of Nottingham, University Park, Nottingham
NG7 2RD, England

Abstract: Recently information on the lattice strains present at Fe$^{2+}$ sites
in KMgF$_3$ has been obtained from electron spin resonance linewidth data.
The use of this data in an empirical model previously used with success on
Fe$^{2+}$:MgO shows that this model also gives an excellent description of the
acoustic relaxation losses in Fe$^{2+}$:KMgF$_3$. In order to place this empirical
model on a more sound theoretical footing a theory of relaxation losses in
multi-level systems based on the rate equations for the population of each
level has been studied. The empirical model results only if simplifying
assumptions are made and the implications of these are described.

Acoustic relaxation losses occur when the strain of an acoustic wave
modulates the energy levels of a system such as that consisting of a number of
magnetic ions embedded in a dielectric lattice. The dynamic repopulation of the
levels of such a system results in a loss to the acoustic wave. For a two-level
system the form of the loss α is:

$$\alpha = \text{constant} \cdot \frac{G^2}{v^3 kT} \cdot \frac{\omega^2 \tau}{1 + \omega^2 \tau^2}$$

where ω is the acoustic angular frequency, v is the acoustic velocity, G is a
coupling factor related to the energy level shift per unit strain and $\tau(T)$ is the
relaxation time. It may be shown that the expression for a n-level system reduces
to the sum of $n-1$ such expressions above. Random lattice strains influence the
magnitude and acoustic mode dependence of α via their effect on G and on τ, and
recently a successful treatment of the effect of strains on the relaxation loss
due to the Jahn-Teller ion Ni$^{3+}$ in the Al$_2$O$_3$ lattice has been given.

It is interesting to study Fe$^{2+}$ in cubic environments such as those provided
by MgO or KMgF$_3$, since quite different acoustic relaxation behaviour is found in
the two systems. In MgO the acoustic loss of T_2 symmetry modes is much
weaker than the predictions of a strain free model would suggest, while in KMgF$_3$
it is the E-symmetry modes which are experimentally less attenuated than on such
a model.

An empirical model due to King and Monk treats the effect of lattice
strains by considering a single two-level expression for the three-level ground
state but with a coupling factor $G^2 = (G_1 - G_2)^2 + (G_2 - G_3)^2 + (G_3 - G_1)^2$ where
G_1, G_2, G_3 are the shifts in the energies of the three ground state levels due to a unit acoustic strain in the presence of a much larger static lattice strain. Factors which represent reductions in the unstrained values of G^2 were computed as a function of the ratio of a mean compressional to a mean shear lattice strain, using the known form of the Hamiltonian.

The anisotropy of the electron paramagnetic resonance linewidth gives a measure of this ratio and for Fe$^{2+}$:MgO use of the empirical model then gives excellent predictions of the acoustic losses experimentally observed. Recently Grimshaw has measured the anisotropy of the Fe$^{2+}$ electron paramagnetic resonance linewidths for KMgF$_3$. The anisotropy is very different from that in MgO, but again use of the empirical model gives very good estimates of the acoustic relaxation losses of the various acoustic modes.

In order to understand why this simple empirical model is so successful a treatment of the acoustic relaxation loss in a n-level system has been developed and then applied to the Fe$^{2+}$ ion. This treatment uses the driven rate equations for the populations of the n-levels. The energies of the n-levels are displaced by the acoustic wave, the dynamic repopulations may be calculated from the rate equations, and the overall loss derived. This involves solving the equations:

$$ j \omega N_i \sum_s \frac{(G_i^s - G_1^s)}{kT} \frac{N_s^0}{s} = j \omega n_i + \sum_r n_r P_{ri} - n_i \sum_r P_{ir} $$

for the n_i and then obtaining the attenuation from the expression:

$$ \alpha = \frac{8.686}{2\beta \nu} \sum_i \text{Im}(n_i) G_i^1 $$

In these equations N_i^0 is the thermal equilibrium population of the i^{th} level, n_i is the dynamic deviation from the equilibrium which would be obtained if the levels were frozen in energy at a particular instant in time, and the P_{ij} are the probabilities of transitions between the i^{th} and j^{th} levels per unit time. The G_i^1 are linearly related to the G_i^1 of the empirical model. This treatment gives the usual expression for a two-level system and for a three-level system yields:

$$ \alpha \propto \frac{1}{(\omega^2 + \gamma_1^2)(\omega^2 + \gamma_2^2)} \left\{ \omega^2 [P_1(G_1^1 - G_3^1)^2 + P_2(G_1^1 - G_2^1)^2 + P_3(G_1^1 - G_2^2)^2] \
+ (P_1 P_2 + P_2 P_3 + P_3 P_1) \{P_1[(G_1^1 - G_3^1)^2 + (G_1^1 - G_2^1)^2] + P_2[(G_1^2 - G_2^1)^2 + (G_1^2 - G_3^1)^2] + P_3[(G_3^1 - G_1^1)^2 + (G_3^1 - G_2^1)^2] \} \right\} $$

where $P_1 = P_{23} = P_{32}$ etc. γ_1 and γ_2 are combinations of P_i. The above expression which can be decomposed into two, two-level expressions, has to be summed over all ions. Since each ion has a different strain each has in general a different set
of G_1 and P_1. If, however, we suppose that the P_1 are equal then the above expression reduces to the empirical expression and the two relaxation peaks coincide.

We note that experimentally the relaxation peak is observed in MgO and KMgF_3 in a region where an Orbach term involving the first group of excited states dominates the relaxation\(^2,3,4\). A single peak is observed in each case, the form of which gives a good prediction of the energy of the excited states ($\text{MgO}, 110 \text{ cm}^{-1}$, $\text{KMgF}_3, 96 \text{ cm}^{-1}$). This would not occur were it described by the sum of two different two-level expressions and the single peak is consistent with the P_1 being equal. Is it true then that all the P_1 are equal or are there another set of simplifying circumstances? Rough calculations suggest that although the P_1 will have the same temperature dependence they are not closely equal in magnitude.

We note that the rate equation method is equivalent to ignoring the off-diagonal elements in a density matrix formulation such as that by Isawa et al. The use of the rate equations assumes that T_2 relaxation times are much shorter than T_1 relaxation times. At the temperature at which the relaxation peaks are observed this approximation may not be strictly valid. The general expressions for a three-level system involving such terms are, however, very complex and difficult to handle. It should also be noted that current Jahn-Teller theories have so far failed to predict the equal coupling of T_2 and E acoustic modes to the Fe$^{2+}$ ion.

Acknowledgements

I would like to thank F. Sheard & K. Lassmann for very helpful discussions and M. Grimshaw for allowing the use of his linewidth data.

References

7. King, P. J. and Monk, D. J., to be published.