UNRESOLVED PROBLEMS IN POLYMERIC ANELASTICITY

N. McCrum

To cite this version:

N. McCrum. UNRESOLVED PROBLEMS IN POLYMERIC ANELASTICITY. Journal de Physique Colloques, 1981, 42 (C5), pp.C5-501-C5-503. <10.1051/jphyscol:1981575>. <jpa-00221118>

HAL Id: jpa-00221118
https://hal.archives-ouvertes.fr/jpa-00221118
Submitted on 1 Jan 1981

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
UNRESOLVED PROBLEMS IN POLYMERIC ANELASTICITY

N.G. McCrum

Department of Engineering Science, Oxford University, England

When examining progress in the theory of polymeric anelasticity it is fruitful to have in mind an ideal theory: to my mind this is the Snoek Theory which provides a quantitative rationalisation of the relaxation time τ,

$$\tau = \tau_\infty \exp \left(\frac{\Delta H}{RT} \right)$$

and also of the relaxation strength, ΔE,

$$\Delta E = \frac{E_U - E_R}{E_R}$$

In polymeric anelasticity there is at present no comparable theory for any of the several types of relaxation which have been observed.

The reasons for this are several fold. First, a polymer normally exhibits three or four relaxations (observed, say, at 1Hz in the temperature range 0K to the melting point or glass transition). These relaxation times are much larger than in metals and overlap to such an extent that determination of the relaxed and unrelaxed moduli is impossible. Second, there is no reported instance of a single relaxation time: the theoretical attack is therefore based a priori on a complex model with a distribution of relaxation times which extends over many decades of time. Third, experimental analysis has invariably adopted the concept of time temperature equivalence, first introduced in metal anelasticity by Zener and Kie, which is based on the hypothesis that, for a specific relaxation, all elements of the distribution have the same value of ΔH: this hypothesis has been so widely used and for such a time that it is frequently taken as an axiom but in fact the evidence for it is meagre and it is probably not true. Fourth, in amorphous polymers the lack of precise understanding of the solid state structure has inhibited progress: in crystalline polymers, the greater part of the relaxation mechanisms occur in the amorphous fraction, and the same factor has also
prevented systematic progress.

The one pearl is, of course, the theory of rubber elasticity in anelastic terms this is a theory for the relaxed modulus, E_R, of the glass to rubber relaxation. There are many qualitative achievements, in which mechanisms have been assigned to specific chemical structures within the molecule; the most thorough assignment is that of Heijboer for the cyclohexyl group in polycyclohexylmethacrylate. The methods of anelastic study, the torsion pendulum in particular, and the practical significance of anelastic effects in polymers, has lead to widespread use of internal friction in fundamental research and also in quality control. Its position is quite central in mechanical testing, considerably greater than the position of internal friction in metal technology.

In present research activity, I distinguish two controversial areas of fundamental significance. They are both concerned with elucidating the particular characteristics of polymeric relaxations.

The first major unsolved problem in polymeric anelasticity is the origin of physical aging. When a polymer is cooled to a temperature T and then maintained at T it is observed that the modulus increases slowly with time and the damping falls. In some polymers, this can be due to a slow crystallization, a point which has been understood for a long time and is of trivial interest. But in glassy polymers, and in crystalline polymers when no slow crystallization occurs, the modulus at T also increases with storage time: this effect has been termed physical aging by Struik. There is no satisfactory explanation, although several have been offered. Physical aging is of considerable interest, both from a fundamental point of view and also practically.

The second major unsolved problem is the validity of the above mentioned constant ΔH hypothesis. The new non-isothermal techniques (T-jump and thermal sampling) enable ΔH to be determined for narrow packets within a distribution: all experiments using these methods show ΔH is not constant.
Each packet of relaxation times within the distribution has a different \(\Delta H \) and \(\tau_\infty \). The temperature dependence of the relaxation times is given by,

\[
\tau = \tau_c \exp \left(\frac{\Delta H}{R} \left[\frac{1}{T} - \frac{1}{T_c} \right] \right),
\]

at the compensation temperature \(T_c \) all relaxation times are equal to \(\tau_c \). This result is in keeping with the theory of Zener and Wert for the proportionality between \(\Delta S \) and \(\Delta H \): it is also in keeping with empirical evidence from Reaction Kinetics. For the glass-rubber relaxation \(T_c \) is close to \(T_g \) and for the \(\alpha \)-relaxation in polypropylene it is close to \(T_m \).

REFERENCES

1. C. Zener, "Elasticity and Anelasticity of Metals", University of Chicago, (1948)
3. J. Heijboer, TNO Centraal Laboratorium Communication No. 435, (1972), Delft, The Netherlands
11. N. G. McCrum et al, to be published