INTERNAL FRICTION AND MAGNETIC AFTER-EFFECTS IN Fe-V-N ALLOYS

J. Zgadzaj, J. Ilczuck, J. Morón

To cite this version:

HAL Id: jpa-00221001
https://hal.archives-ouvertes.fr/jpa-00221001
Submitted on 1 Jan 1981

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
INTERNAL FRICTION AND MAGNETIC AFTER-EFFECTS IN Fe-V-N ALLOYS

J. Zgadzaj, J. Ilczuk and J.W. Morón

Institute of Physics and Chemistry of Metals, Silesian University, 40-007 Katowice, Bankowa 12, Poland

Abstract.—Internal friction and magnetic permeability disaccommodation have been studied for a dozen or so samples of four Fe-V/0.34-1.0%N alloys nitrided in the ammonia atmosphere at 673 K. The obtained curves reveal three distinct bands of magnetic after-effect/A, B, C/ and a small peak of the Snoek relaxation. Band A corresponds to the fast-Weijlering relaxation and consists of three elementary processes with \(\tau \sim 10^{-15} \) s. Band C is identical with the relaxation discovered in 1973 by the K.H. Jack group while band B has not been observed in the literature till now.

1. Introduction.—Migrational relaxations in Fe-V alloys related to the presence of nitrogen in the solid solution have many times been studied since 1953 [1] by the internal friction /IF/ method. The most interesting results have been referred in [1-6]. In samples nitrided at 1223 K beside the Snoek relaxation a second high peak has been observed /the F-K relaxation/ [1-4]. Nitriding of Fe-V samples at 673 to 923 K leads to the appearance of a third relaxational process at yet higher temperatures [5,6].

In paper [7] relaxations in nitrided Fe-V alloys were investigated by means of magnetic permeability disaccommodation /MPD/ measurements. In the present paper are compared results obtained by both methods - IF and MPD.

2. Experimental and investigated samples.—Internal friction has been measured by means of an acoustic relaxometer [8]. Magnetic permeability disaccommodation has been measured on a Maxwell-Vien ac bridge. Isochronal MPD curves have been determined. In the numerical analysis of all the obtained curves the linear spectrum of relaxation times as well as the Wert-Marx law have been applied. In the case of several relaxations the MPD curve is described by the formula:

\[
\Delta(\frac{1}{\chi}) = \sum_i \frac{4}{\chi_i} \left[\exp\left(-\frac{t}{\Theta_i}\right) - \exp\left(-\frac{t}{\Theta_i}\right) \right]
\]

where \(\Theta_i \) is the time-constant and \(\frac{4}{\chi_i} \) the intensity of the i-th relaxation; the latter value is proportional to the concentration /c_i/ of the i-th relaxator. Because the height of each relaxation peak /A_i/ is proportional to \(\frac{4}{\chi_i} \), the following formula is valid:
Some Fe-V alloys containing 0.34 to 1 % vanadium have been studied. After stress-relief annealing at 1223 K for 10 h and 1073 K for 1.5 h on isochronal MPD and IF curves no relaxational peaks have appeared /curve a in fig.2/. Samples have been nitrided at 673 K in the ammonia atmosphere and then aged for 30 min at higher and higher temperatures. By means of electron microscopy it has been shown that after nitriding the so-called tweed pattern appears resulting from superposition of regularly distributed pre-precipitation plates placed in \{100\} planes of alpha iron. These plates vanished after ageing at 1073 K and simultaneously the microhardness and the coercive force decreased.

3. Results.—Initial investigations have shown that the migrational relaxation spectrum in Fe-V alloys nitrided by the described method is very rich and consists, beside a trace of the Snoek relaxation, of three bands: A,B,C /figs. 1-3/.

\[A_i = \text{const.} \quad \chi_i = \text{const.} \quad c_i \]

\(\Delta (\chi^{-1}) \cdot 10^6 \) on temperature for the Fe-V/0.52 \% sample after nitriding at 673 K for 30 min; frequency \(f = 108 \) cps.

\(\Delta (\chi^{-1}) \cdot 10^6 \) on temperature for the Fe-V/0.52 \% sample: a/ after stress-relief annealing, b/ after nitriding at 673 K for 30 min; intensity of the magnetizing field 0.19 A/m; the maximum amplitude of the demagnetizing field 1100 A/m; \(f = 1050 \) cps, \(t_1 = 23 \) s, \(t_2 = 293 \) s.

Band A corresponds to the Fast-Heijering relaxation [1] while C to the relaxation discovered by the K.H. Jack group [5,9].

In the region of band A three discrete IF peaks or distinct inflexion points have usually been observed /figs. 1,3/ while the MPD
measurements have given one broad peak /fig.2/. In the region of B+C bands on IF curves a wide peak has been observed, visibly broadened form the B side while MPD has always split it into two separate relaxational processes.

![Figure 3](image_url)

Fig.3. The dependence of Q^{-1} on temperature for the Fe-V/0.34% sample after nitriding at 673 K for 30 min; frequency $f = 87$ cps.

In fig.4 are shown as an instance the results of analysis of isochronal MPD curves obtained for the Fe-V/0.34% sample.

![Figure 4](image_url)

Fig.4. The result of analysis of the isochronal MPD curve obtained for the Fe-V/0.34% sample after nitriding for 30 min.

In the F-M region three elementary processes /I,II,III/ have been obtained with activation energies $Q_I = 0.87$ eV, $Q_{II} = 0.94$ eV, $Q_{III} = 0.99$ eV, for Θ, the value $4.5 \cdot 10^{-15}$ s [9] has been assumed. For experimental peaks B and C two elementary processes have been obtained for each of them. However, it should be noticed that in the case of these peaks a continuous spectrum should rather be applied; it results from proposed in the literature mechanisms giving rise to these relaxations /section 4/.

Isochronal ageing of nitrided Fe-V samples in the range 673 - 1173 K resulted in the decay of the Snoek relaxation /process O/ and A,B and C peaks. In fig.5 are presented contributions of peak O.
and peaks $A/_{A_I} + A/_{II} + A/_{III}$, $B/_{A_{IV}} + A/_{V}$ and $C/_{A_{VI}} + A/_{VII}$ to the total KPD curve in dependence on the ageing temperature. Because the peak heights A_i are proportional to the concentration c_i of the i-th relaxator /formula (2)/ it can be assumed that $A_i/\Sigma A_i$ state for the atomic fractions of nitrogen taking part in each relaxation.

Fig. 5. The dependence:

Curve a of $A_i + A_{II} + A_{III}$

$A_1^2 + A_2^2$ $A_1^2 + A_2^2$

$A_3^2 + A_4^2$ versus ageing temperature; sample Fe-V/0.34 %/ after nitriding for 30 min.

4. Discussion.- In figs. 1 and 3 on the temperature axis are marked peak temperatures calculated for the Snoek relaxation, processes I, II, III and for bands B and C on the basis of numerically obtained data for MPD curves. It can be seen that IF and MPD measurements give the same results.

Band A. Three elementary processes in band A, with pre-exponential factors $\sim 10^{-15}$ s, have also been obtained by Welch and Carpenter [4]. They consider that in the case of this relaxation nitrogen atoms order directionally in the vicinity of an immobile V-N pair called by them the VN defect. This defect consists of a substitutional V atom in the lattice point, and of an immobile N atom occupying a tetrahedral site situated as near as possible to the vanadium atom.

Fig. 6 presents the dependence of heights of individual elementary processes, forming peak A_1, on the square height of the Snoek peak (A_o^2). It can be seen that there is a linear correlation between A_i, A_{II}, A_{III} and A_o^2 while there is no such dependence for $A_1 = f/A_o^2 / i= 1,2,3$.

It seems possible that the above fact may be explained in the following way. If we assume that the concentration of VN defects is proportional to the number of N atoms responsible for the Snoek relaxation and the concentration of relaxators - single N atoms, related to each peak forming the F-M relaxation /I,II,III/, is proportio-
nal to the concentration of VN defects as well as to the concentration of N atoms, giving rise to the Snoek relaxation, then the following relation should be valid:

\[A_i = \text{const}. A_0^2 \quad i = I, II, III \]

\[\text{Fig. 6. The dependence of heights of elementary processes } I, II, III \text{ on the square height of the Snoek peak; the sample Fe-V/0.34 %/} \]

The result of this argumentation seems to be confirmed by the experimental results presented in fig. 6.

Band C. Experimental peak C is related to the directional ordering of N atoms in the vicinity of V-N plates situated in \{100\} planes of the matrix \[5,6\]. According to D.H. Jack \[10\] edges of these plates are of interstitial type dislocation loops nature so in their environment a part of free N atoms collects. The binding energy of N atom in the strain field of the plate quasi-dislocations increases its activation energy of migration in consequence of what the peak related to the directional ordering is situated considerably higher than the temperatures of the Snoek and the F-M peaks.

Band B. Nitriding of Fe-V samples in conditions given above leads also to the appearance of structural elements intermediate between VN defects and coherent with the matrix V-N plates. The mentioned plate structural elements, containing Fe, V, N atoms, are sometimes called G-P zones of a new type /Fe-V-N zones/ \[5,6\].

The authors of \[6\] have mentioned indeed about additional internal friction related to elements of such a type, however, this IF has not been observed in the form of a separate peak. After-effect bands B and C have already been called \[11\] the plate or J-J relaxations.

The obtained results suggest the following model of structural variations proceeding in Fe-V-N alloys. During nitriding at 673 K in the ammonia atmosphere are formed simultaneously VN defects,
G-P zones of a new type and coherent V-N plates. The isochronal ageing in the temperature range 673 - 1173 K causes migration and clustering of N atoms and VN defects and formation of additional G-P zones of a new type. In consequence of this the intensities of the Snoek and the F-M relaxations decrease and the contribution of peak B increases /fig.5/. As a result of replacement of Fe atoms in zones by V atoms and of ordering of the stoichiometric composition of pre-precipitates new V-N plates appear which with increasing ageing temperature enlarge their dimension and at 1073 K transform into precipitates of incoherent VN nitride. At this temperature the tweed pattern vanishes as well as the migrational relaxations.

5. References.
 Aachen 1973, Springer Verlag, Berlin 1975, p. 266
 Polish Conference on Anelastic Relaxation and Magnetic After-
 Effects in Solids RENIOM - 80, eds. J.W. Moroń and J. Ilczuk,
 Silesian University, Katowice 1981, in press /in Polish/.
8. B. Jankowski, J. Ilczuk, J.W. Moroń, as ref. [7]
 13 , 891 /1972/